find the range of
i) f(x) =3/2 -x^2
ii) f(x) = 3- |x-2|
Answers
Answered by
2
Answer:
i) f(x ) = 3/( 2 - x²)
y = 3/( 2 - x²)
2y -yx² = 3
x²y -2y + 3 = 0
x² =(2y -3)/y
x = ±√{( 2y -3)/y }
f( y) = ±√{(2y -3)/y}
domain of f( y) = range of f(x )
(2y -3)/y ≥0 ,
y ≥ 3/2 and y <0 and y ≠ 0
if y = 0
f(x ) = y = 3/(2 -x²) =0
3 ≠ 0
so, y ≠ 0
hence , range of f(x) € [ 3/2, ∞) U(-∞, 0)
Step-by-step explanation:
Answered by
1
i) f(x) = (-∞, 3/2]
ii) f(x) = (-∞, 3]
Similar questions