Math, asked by Addy2004, 1 month ago

Find the range of
f(x) =  {cos}^{ - 1}  \sqrt{ log_{[x]}( \frac{|x|}{x} ) }
, where [.] denotes the greatest integer function ​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

f(x) = { \cos}^{ - 1} \sqrt{ log_{[x]} \bigg( \frac{|x|}{x}  \bigg) } \\

Here, f(x) is only defined for x\in(0,1)\:\cup\:[2,\infty), because,

 [x] > 0 \:  ,  \:  \frac{ |x| }{x}  > 0 \:  \:  \: and \:  \:  \:  [x]  \not = 1 \\

 \implies x > 0 \: ,  \:  x  > 0 \:  \:  \: and \:  \:  \:  x  \not \in [1 ,2)\\

 \implies x  \in (0 ,1) \cup  [2 ,  \infty )\\

But, if x>0 , then \frac{|x|}{x}=1\\

So,

f(x) = { \cos}^{ - 1} \sqrt{ log_{[x]} ( 1 ) } \: \:  \:  \:   , \: x \in(0 ,1) \:  \cup \: [2, \infty ) \\

 \implies \: f(x) = { \cos}^{ - 1} \sqrt{ 0} \: \:  \:  \:    \:  \\

 \implies \: f(x) = { \cos}^{ - 1} ( 0) \: \:  \:  \:   \:  \\

 \implies \: f(x) =  \frac{\pi}{2}  \: \:  \:  \:   \:  \\

So,

Range of f(x) \bold{\in\bigg\{\frac{\pi}{2}\bigg\}}\\

Answered by parisehrawat1628
1

answer is in the picture

Attachments:
Similar questions