Math, asked by papafairy143, 17 days ago

Find the range of

f(x) =  \frac{x - [x]}{1 -[x] + x }

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{x - [x]}{1 -[x] + x } \\

can be rewritten as

\rm \: f(x) = \dfrac{x - [x]}{1  + x-[x]} \\

We know, By definition of Greatest Integer function and fractional part,

\boxed{ \rm{ \:x - [x] =  \:  \{x \} \: }} \\

So, using this definition, we have

\rm \: f(x) = \dfrac{\{x \}}{1 + \{x \} } \\

can be rewritten as

\rm \: f(x) = \dfrac{1 + \{x \} - 1}{1 + \{x \} } \\

\rm \: f(x) =1 -  \dfrac{1}{1 + \{x \} } \\

As we know, from definition of fractional part,

\rm \: 0 \leqslant \{x \} < 1 \\

On adding 1 in each term, we get

\rm \: 0  + 1\leqslant \{x \} + 1 < 1 + 1 \\

\rm \: 1\leqslant \{x \} + 1 < 2 \\

\rm\implies \:\dfrac{1}{2}  < \dfrac{1}{\{x \} + 1}   \leqslant  1 \\

On multiply by - 1, we get

\rm\implies \: - 1 \leqslant  \dfrac{ - 1}{\{x \} + 1}  <  - \dfrac{1}{2}  \\

On adding 1 in each term, we get

\rm\implies \: 1- 1 \leqslant  1 - \dfrac{ 1}{\{x \} + 1}  < 1 - \dfrac{1}{2}  \\

\rm\implies \: 0 \leqslant  f(x) <  \dfrac{1}{2}  \\

\rm\implies \:Range \: of \: f(x)  \: \in \: \bigg[0, \: \dfrac{1}{2}\bigg) \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{ |x|  < y\rm\implies \: - y < x < y}\\ \\ \bigstar \: \bf{ |x|  \leqslant y\rm\implies \: - y \leqslant x \leqslant y}\\ \\ \bigstar \: \bf{ |x|  > y\rm\implies \: x <  - y \: or \: x > y} \: \\ \\ \bigstar \: \bf{ |x| \geqslant y\rm\implies \:x \leqslant  - y \: or \: x \geqslant y}\\ \\ \bigstar \: \bf{ |x - a|  < y\rm\implies \:a - y < x < a + y}\\ \\ \bigstar \: \bf{ |x - a|  \leqslant y\rm\implies \:a - y \leqslant x \leqslant a + y}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions