Math, asked by XxSodiumxX, 2 days ago

Find the range of the following function :-

f(x) = \dfrac{x^2-3x+2}{x^2+x-6}

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = \dfrac{ {x}^{2}  - 3x + 2}{ {x}^{2}  + x - 6}  \\

can be rewritten as

\rm \: f(x) = \dfrac{ {x}^{2}  - 2x - x + 2}{ {x}^{2}  + 3x - 2x - 6}  \\

\rm \: f(x) = \dfrac{ x(x - 2) - 1(x - 2)}{x(x + 3) - 2(x + 3)}  \\

\rm \: f(x) = \dfrac{ (x - 2)(x - 1)}{(x + 3) (x - 2)}  \\

\rm\implies \:x \:  \ne \: 2, \:  - 3 \\

Now,

\rm \: f(x) = \dfrac{x - 1}{x + 3} \\

Let assume that

\rm \: f(x) = y = \dfrac{x - 1}{x + 3} \\

\rm \: xy + 3y = x - 1 \\

\rm \: xy  - x =  - 3y - 1 \\

\rm \: x(y  - 1) =  - (3y + 1) \\

\rm \: x(1  - y) =  3y + 1 \\

\rm \: x = \dfrac{3y + 1}{1 - y} \\

\rm\implies \:y \:  \ne \: 1 \\

And

\rm \: When \: x \:  =  \: 2 \\

\rm \: f(x) = 2 = \dfrac{3y + 1}{1 - y}  \\

\rm \: 2 - 2y = 3y + 1

\rm \:  - 2y -  3y  =1 - 2 \\

\rm \:  - 5y =  - 1 \\

\rm\implies \:y = \dfrac{1}{5} \\

So, it means,

\rm\implies \:y \:  \ne \: 1, \: \dfrac{1}{5}  \\

\rm\implies \:y \:   \in \: R \:  -  \:  \bigg\{1, \: \dfrac{1}{5} \bigg\}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

If a and b are two real positive numbers such that a < b, then

\boxed{\sf{  \:(x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \: }} \\

\boxed{\sf{  \:(x - a)(x - b) \leqslant  0 \:  \: \rm\implies \:a \leqslant x \leqslant b \: }} \\

\boxed{\sf{  \:(x - a)(x - b)  &gt;   0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt; b \: }} \\

\boxed{\sf{  \:(x - a)(x - b) \geqslant 0 \:  \: \rm\implies \:x \leqslant  a \:  \: or \:  \: x \geqslant  b \: }} \\

\boxed{\sf{  \: |x|  &lt; y \:  \: \rm\implies \: \:  - y &lt; x &lt; y \: }} \\

\boxed{\sf{  \: |x|  \leqslant  y \:  \: \rm\implies \: \:  - y  \leqslant  x  \leqslant  y \: }} \\

Answered by XxitzZBrainlyStarxX
7

Question:-

Find the range of the following function :-

 \sf \large f(x) = \dfrac{x^2-3x+2}{x^2+x-6}.

Given:-

\sf \large f(x) = \dfrac{x^2-3x+2}{x^2+x-6}.

To Find:-

  • The range of the following function.

Solution:-

\sf \large f(x) = y =  \frac{x {}^{2}  - 3x + 2}{x {}^{2} + x - 6 }

\sf \large \Rightarrow y =  \frac{x {}^{2}  - 2x - x + 2}{x {}^{2}  + 3x - 2x - 6}

\sf \large \Rightarrow y =  \frac{(x - 2)(x - 1)}{(x + 3)(x - 2)}

y is not defined when (x + 3) (x 2) = 0.

i.e., x = 3 and x = 2.

 \sf \large \therefore D_f =  R -  \big \{ - 3,2 \big \}

 \sf \large So, \: y =  \frac{x - 1}{x + 3}

 \sf \large \Rightarrow xy + 3y = x - 1

 \sf \large \Rightarrow 3y + 1 = x - xy

 \sf \large \Rightarrow  \frac{3y + 1}{1 - y}  = x

 \sf \large \because1 - y ≠0

 \sf \large \therefore y≠1

 \sf \large For \: x = 2,y =  \frac{1}{5}  \\  \:  \:  \sf \large \big \{but \: x = 2 \: is \: not \: in \: decimal \big \}

 \sf \large  \therefore y =  \frac{1}{5}  \: cannot \: be \: range

Answer:-

 { \boxed{ \sf \large So,  \: The  \:  Range  \: is =R -  \bigg \{ \frac{1}{5} ,1 \bigg \}. }}

Hope you have satisfied.

Similar questions