find the range of the function 1 / 2 cos x - 1.
Answers
EXPLANATION.
Range of the function.
⇒ 1/(2cosx - 1).
As we know that,
Range of cos x = [-1,1].
Range of 2cosx = [-2,2].
⇒ - 1 ≤ cos x ≤ 1.
⇒ - 2 ≤ 2cosx ≤ 2.
⇒ - 2 - 1 ≤ 2cosx - 1 ≤ 2 - 1.
⇒ - 3 ≤ 2cosx - 1 ≤ 1.
⇒ (-1/3) ≤ 1/(2cosx - 1) ≤ (1).
Now, we get a range.
Range = (-∞, -1/3] ∪ [1,∞).
MORE INFORMATION.
Domain and range of inverse trigonometric functions.
(1) = sin⁻¹x
Domain = [-1,1]
Range = (-π/2,π/2).
(2) = cos⁻¹x.
Domain = [-1,1]
Range = [0,π].
(3) = tan⁻¹x.
Domain = (-∞,∞).
Range = (-π/2,π/2).
(4) = cot⁻¹x.
Domain = (-∞,∞).
Range = (0,π).
(5) = sec⁻¹x.
Domain = (-∞,-1] ∪ [1,∞).
Range = [0,π/2) ∪ (π/2,π].
(6) = cosec⁻¹x.
Domain = (-∞,-1] ∪ [1,∞).
Range = [-π/2,0) ∪ (0,π/2].
EXPLANATION.
Range of the function.
⇒ 1/(2cosx - 1).
As we know that,
Range of cos x = [-1,1].
Range of 2cosx = [-2,2].
⇒ - 1 ≤ cos x ≤ 1.
⇒ - 2 ≤ 2cosx ≤ 2.
⇒ - 2 - 1 ≤ 2cosx - 1 ≤ 2 - 1.
⇒ - 3 ≤ 2cosx - 1 ≤ 1.
⇒ (-1/3) ≤ 1/(2cosx - 1) ≤ (1).
Now, we get a range.
Range = (-∞, -1/3] ∪ [1,∞).
MORE INFORMATION.
Domain and range of inverse trigonometric functions.
(1) = sin⁻¹x
Domain = [-1,1]
Range = (-π/2,π/2).
(2) = cos⁻¹x.
Domain = [-1,1]
Range = [0,π].
(3) = tan⁻¹x.
Domain = (-∞,∞).
Range = (-π/2,π/2).
(4) = cot⁻¹x.
Domain = (-∞,∞).
Range = (0,π).
(5) = sec⁻¹x.
Domain = (-∞,-1] ∪ [1,∞).
Range = [0,π/2) ∪ (π/2,π].
(6) = cosec⁻¹x.
Domain = (-∞,-1] ∪ [1,∞).
Range = [-π/2,0) ∪ (0,π/2].