Math, asked by Anonymous, 1 day ago

Find the range of the function:
f(x) = 3cos x - 4sin x

-3 ≤ 3cos x ≤ 3 and -4 ≤ -4sin x ≤ 4 Can we add these both inequalities to the range of the function?
By adding the inequalities, we get -7 ≤ 3cos x - 4sin x ≤ 7.
But the answer is given as [-5, 5]

Answers

Answered by IamIronMan0
43

Step-by-step explanation:

f(x) = 3 \cos(x)  - 4 \sin(x)  \\  \\  =  5 \{ \frac{3}{5}  \cos(x)  -  \frac{4}{5}  \sin(x)  \} \\  \\ let \:  \cos( \alpha )  =  \frac{3}{5}  \: then \:  \sin( \alpha )  =  \frac{4}{5}  \\  \\  f(x) = 5 \{ \cos( \alpha )  \cos(x)  -  \sin( \alpha )  \sin(x)  \} \\  \\   \red {\boxed{f(x) = 5 \cos(x +  \alpha ) }} \\  \\ range \: of \: cosine \: function \\  \\  - 1 \leqslant  \cos(x +  \alpha  )  \leqslant 1 \\  \\  \implies \:  - 5 \leqslant 5 \cos(x +  \alpha )  \leqslant 5 \\  \\  \implies \:  - 5 \leqslant f(x) \leqslant 5

No we can't add these two inequalities to get exact range because both functions are not independent of each other . If there were cos x and sin y then you could add them and answer

[ -7 , 7 ] could have been right . [ Although it does give a interval in which our original range lies ]

Adding these two equations is meaning to say that adding maximum value of both 3cosx and -4sinx is maximum of their sum but you see they both can't be maximum at same x .

3 \cos(x)  = 1 \:  \: and \:  \: -  4 \sin(x) = 1

Both sine and cosine attains their max Value at different x .

Answered by mathdude500
50

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = 3 cosx - 4 sinx

To find the range of f(x) = 3 cosx - 4 sinx, we have first transform this expression to single Trigonometric function.

So, for that, we have to multiply and divide by square root of (square of coefficient of cosx + square of coefficient of sinx).

So,

\rm \: Multiply\:and\:divide\:by \: \sqrt{ {3}^{2}  +  {( - 4)}^{2} } =  \sqrt{9 + 16}  = 5 \\

So, above expression can be rewritten as

\rm \: f(x) = 5\bigg(\dfrac{3}{5} cosx - \dfrac{4}{5}  sinx\bigg)

Let assume that,

\rm \: cosy = \dfrac{3}{5}

So,

\rm \: siny = \sqrt{1 -  {cos}^{2} y}

\rm \:  =  \:  \sqrt{1 -  {\bigg(\dfrac{3}{5} \bigg) }^{2} }

\rm \:  =  \:  \sqrt{1 -  {\dfrac{9}{25}} }

\rm \:  =  \:  \sqrt{{\dfrac{25 - 9}{25}} }

\rm \:  =  \:  \sqrt{{\dfrac{16}{25}} }

\rm\implies \:siny = \dfrac{4}{5}  \\

So, above expression can be rewritten as

\rm \: f(x) = 5(cosx \: cosy \:  -  \: sinx \: siny)

\rm \: f(x) =5 \: cos(x + y) \\

Now, We know that,

\rm \:  - 1 \leqslant cos(x + y) \leqslant 1

\rm\implies \:\rm \:  - 5 \leqslant 5cos(x + y) \leqslant 5

\rm\implies \:\rm \:  - 5 \leqslant f(x) \leqslant 5

Hence,

\rm\implies \:  \: \boxed{\rm{  \: - 5 \leqslant  \:  3 cosx - 4 sinx \:  \leqslant 5 \: \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

As it is true that,

-3 ≤ 3cos x ≤ 3 and -4 ≤ -4 sin x ≤ 4

But we can't add them to get [- 7, 7] as both Trigonometric functions are depend on the same variable x and both cannot assume the same values at the same value of x. For example sin0 is 0 and cos0 = 1, so these two inequalities cannot be added to give [- 7, 7]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. The maximum and minimum value of the

\rm \: f(x) = a \: sinx \:  +  \: b \: cosx \: is \:   \\ \\ \rm \: [ -  \sqrt{ {a}^{2}  +  {b}^{2}}, \: \sqrt{ {a}^{2}  +  {b}^{2}}] \\

\rm \: f(x) = a \: sinx \:  +  \: b \: cosx \: + c \:  is \:   \\ \\ \rm \: [c -  \sqrt{ {a}^{2}  +  {b}^{2}}, \: c + \sqrt{ {a}^{2}  +  {b}^{2}}] \\

2. Range of Trigonometric functions

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Similar questions