Math, asked by aryan021212, 1 day ago

Find the range of the function f(x) =

 {27}^{sin5x} \times  {81}^{cos5x}

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  {27}^{sin5x} \times  {81}^{cos5x} \\

can be rewritten as

\rm \: f(x) =  {( {3}^{3})}^{sin5x} \times  {( {3}^{4})}^{cos5x} \\

\rm \: f(x) =   {3}^{3sin5x} \times  {3}^{4cos5x}   \\

\rm \: f(x) =   {3}^{3sin5x + 4cos5x}\\

Now, Consider

\rm \: 3sin5x + 4cos5x \\

Now, multiply and divide by square root of the [ square of coefficient of sin5x plus square of coefficient of cos5x ].

So,

\rm \: Multiply \: and \: divide \: by \:  \sqrt{ {3}^{2}  +  {4}^{2} } =  \sqrt{9 + 16}  = 5 \\

So, above expression can be rewritten as

\rm \:  =  \: 5\bigg( \dfrac{3}{5} sin5x +  \dfrac{4}{5} cos5x\bigg) \\

Let assume that

\rm \: cosy = \dfrac{3}{5}

\rm \: cos^{2} y = \dfrac{9}{25}

\rm \: 1 - sin^{2} y = \dfrac{9}{25}

\rm \: sin^{2} y =1 -  \dfrac{9}{25}

\rm \: sin^{2} y = \dfrac{25 - 9}{25}

\rm \: sin^{2} y = \dfrac{16}{25}

\rm\implies \: \: siny = \dfrac{4}{5} \\

So, above expression can be rewritten as

\rm \:  =  \: 5(sin5x \: cosy \:  +  \: siny \: cos5x)

\rm \:  =  \: 5sin(5x + y) \\

We know,

\rm \:  - 1 \:  \leqslant  \: sin(5x + y) \:  \leqslant  \: 1 \\

\rm \:  - 5 \:  \leqslant  \: 5sin(5x + y) \:  \leqslant  \: 5 \\

\rm\implies \:\rm \:  - 5 \:  \leqslant  \: 3sin5x + 4cos5x \:  \leqslant  \: 5 \\

So,

\rm\implies \: {3}^{ - 5} \leqslant  {3}^{3sin5x + 4cos5x}  \leqslant  {3}^{5}

\rm\implies \: {3}^{ - 5} \leqslant  f(x)  \leqslant  {3}^{5}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf asinx + bcosx & \sf [ - \sqrt{ {a}^{2} + {b}^{2} }, \: \: \sqrt{ {a}^{2} + {b}^{2} }] \\ \\ \sf asinx + bcosx + c & \sf [c - \sqrt{ {a}^{2} + {b}^{2} }, \: c + \sqrt{ {a}^{2} + {b}^{2} }] \end{array}} \\ \end{gathered} \\ \end{gathered} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Similar questions