Math, asked by namrata777, 3 months ago

find the range of the function fx=
x {}^{2} + 2x  + 1 \div x {}^{2} - 8x + 12

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

 \sf \: Find \: the \: range \: of \: the \: function \: f(x) = \dfrac{ {x}^{2}  + 2x + 1}{ {x}^{2} - 8x + 12 }

\large\underline{\bold{Solution-}}

Following steps for used finding the range of a function are:

Write down y = f(x) and then solve the equation for x, giving something of the form x = g(y).

Find the domain of g(y), and this will be the range of f(x).

Note :-

If you can't seem to solve for x, then try graphing the function to find the range.

Now, Let's solve the problem now!!

Step :- 1

 \sf \: Let \: f(x) = y \:  =  \: \dfrac{ {x}^{2}  + 2x + 1}{ {x}^{2} - 8x + 12 }

 \sf \:  {yx}^{2}  - 8xy + 12y =  {x}^{2}  + 2x + 1

 \sf \:  {yx}^{2}  - 8xy + 12y  - {x}^{2}   -  2x  -  1 = 0

 \sf \: (y - 1) {x}^{2}  - x(8y + 2) + 12y - 1 = 0

Step :- 2

Discriminant of the above quadratic expression is

 \sf \: Discriminant, D =  {b}^{2}  - 4ac

 \sf \: D =  {(8y + 2)}^{2}  - 4(y - 1)(12y - 1)

 \sf \: = 4 {(4y + 1)}^{2}  - 4( {12y}^{2} - y - 12y + 1)

 \sf \: = 4\bigg( {16y}^{2}  + 1 + 8y - 12 {y}^{2}  + 13y - 1 \bigg)

 \sf \: =4( {4y}^{2}  + 21y)

Now, solution of above quadratic equation is given by

 \rm :\longmapsto\:\sf \: x \:  =  \: \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

\rm :\longmapsto\:x = \dfrac{8y + 2  \:  \pm \: \sqrt{4y(4y + 21)}  }{2(y - 1)}

\rm :\longmapsto\:x = \dfrac{4y + 1  \:  \pm \: \sqrt{y(4y + 21)}  }{(y - 1)}

\rm :\longmapsto\:y(4y + 21) \geqslant 0

\bf\implies \:y \leqslant  - \dfrac{21}{4}  \:  \:  \: or \:  \:  \: y \geqslant 0

Similar questions