Math, asked by Anonymous, 1 day ago

Find the range of the function:
 \boxed{f(x)= \dfrac{(2^x - 2^{-x})}{(2^x + 2^{-x})}}

Answers

Answered by senboni123456
13

Step-by-step explanation:

We have,

y = f(x)= \dfrac{2^x - 2^{-x}}{2^x + 2^{-x}}

  \implies \: y= \dfrac{2^x - 2^{-x}}{2^x + 2^{-x}}

  \implies \: y \cdot {2}^{x} + y \cdot {2}^{ - x}  = 2^x - 2^{-x}\\

  \implies \: y \cdot {2}^{x} +  \dfrac{y }{ {2}^{x} } = 2^x - \dfrac{1}{ 2^{x}}\\

  \implies \: y \cdot {2}^{x} \cdot {2}^{x}  +  y = 2^x  \cdot {2}^{x} - 1\\

  \implies \: y \cdot {2}^{2x} +  y = {2}^{2x} - 1\\

  \implies \: (y - 1) {2}^{2x} +  y  +  1 = 0\\

  \implies \:  {2}^{2x}  =  -  \dfrac{  y  +  1 }{y - 1}\\

Now, we know,

  \implies \:  {2}^{2x}   > 0\\

  \implies \:  - \dfrac{  y  +  1 }{y - 1}   > 0\\

  \implies \:  \dfrac{  y  +  1 }{y - 1}    <  0\\

  \implies \:  y  \in( - 1,1) \\

Similar questions