Math, asked by Anonymous, 21 days ago

Find the range of the function  f(x) = x\sqrt{1-x^2}

Hint: Solve it either by using AM-GM relation, or by using the concept of maxima and minima.​

Answers

Answered by mathdude500
100

\large\underline{\sf{Solution-}}

The given function is

\rm :\longmapsto\:f(x) = x \sqrt{1 -  {x}^{2} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) = \dfrac{d}{dx}x \sqrt{1 -  {x}^{2} }

We know

\boxed{ \tt{ \: \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}

So, using this, we get

\rm :\longmapsto\:f'(x) = x\dfrac{d}{dx} \sqrt{1 -  {x}^{2} } +  \sqrt{1 -  {x}^{2} }\dfrac{d}{dx}x

\rm :\longmapsto\:f'(x) = x \times \dfrac{1}{2 \sqrt{1 -  {x}^{2} } }\dfrac{d}{dx}(1 -  {x}^{2}) +  \sqrt{1 -  {x}^{2} } \times 1

\rm :\longmapsto\:f'(x) =  \dfrac{x}{2 \sqrt{1 -  {x}^{2}}} ( - 2x) +  \sqrt{1 -  {x}^{2} }

\rm :\longmapsto\:f'(x) =  -  \dfrac{ {x}^{2} }{\sqrt{1 -  {x}^{2}}} +  \sqrt{1 -  {x}^{2} }

\rm :\longmapsto\:f'(x) =  \dfrac{ - {x}^{2} + 1 -  {x}^{2}  }{\sqrt{1 -  {x}^{2}}}

\rm :\longmapsto\:f'(x) =  \dfrac{1 -  2{x}^{2}  }{\sqrt{1 -  {x}^{2}}}

\rm :\longmapsto\:f'(x) =  \dfrac{(1 -  \sqrt{2} x) \: (1 +  \sqrt{2} x)}{\sqrt{1 -  {x}^{2}}}

For maxima or minima,

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\:\dfrac{(1 -  \sqrt{2} x) \: (1 +  \sqrt{2} x)}{\sqrt{1 -  {x}^{2}}} = 0

\bf\implies \:x = \dfrac{1}{ \sqrt{2} }  \:  \: or \:  \:  -  \: \dfrac{ 1 }{ \sqrt{2} }

Now, using first derivative test

\begin{gathered}\boxed{\begin{array}{c|c} \bf Interval & \bf Sign \: of \: f'(x) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x <  - \dfrac{1}{ \sqrt{2} }  & \sf  - ve \\ \\ \sf  - \dfrac{1}{ \sqrt{2} }  < x < \dfrac{1}{ \sqrt{2} }  & \sf  + ve\\ \\ \sf x > \dfrac{1}{ \sqrt{2} }  & \sf  - ve \end{array}} \\ \end{gathered}

\bf\implies \:f(x) \: is \: minimum \: at \: x \:  =  \: -  \:  \dfrac{1}{ \sqrt{2} }  \\  \\ and \\  \\ \bf\implies \:f(x) \: is \: maximum \: at \: x \:  =  \:  \dfrac{1}{ \sqrt{2} }

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf Point & \bf Value \: of \: f(x) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - \dfrac{1}{ \sqrt{2} }  & \sf  - \dfrac{1}{2}  \\ \\ \sf \dfrac{1}{ \sqrt{2} }  & \sf \dfrac{1}{2}  \end{array}} \\ \end{gathered}

Hence,

\rm \implies\:\boxed{ \tt{ \: Range \: of \: f(x) = \bigg[ - \dfrac{1}{2}, \: \dfrac{1}{2}  \bigg] \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}


mddilshad11ab: perfect
Answered by user0888
51

\large\underline{\text{}}\large\underline{\text{Solution}}

\red{\bigstar}The domain of the function.

For the surd to be defined,

\implies1-x^{2}\geq0

\implies x^{2}-1\leq0

\implies(x+1)(x-1)\leq0

\implies -1\leq x\leq1

\red{\bigstar}Characteristic of the graph.

However

\implies f(x)=x\sqrt{1-x^{2}}

\implies f(-x)=-x\sqrt{1-x^{2}}

Hence

\implies f(x)=-f(-x)

Thereby the graph f(x)=x\sqrt{1-x^{2}} is symmetric against the origin.

\red{\bigstar}Condition for the A.M-G.M inequality.

The A.M-G.M inequality can be used when either A.M or G.M is a constant. However, it can be applied when the numbers are positive or 0.

\red{\bigstar}Condition to satisfy the equality.

The inequality shows an equal sign when two numbers are equal.

\red{\bigstar}(Application) Condition for the A.M-G.M inequality.

Where 0\leq x\leq1, consider the two numbers which are positive or 0.

\implies x\geq0

\implies\sqrt{1-x^{2}}\geq0

Squaring both

\implies x^{2}\geq0

\implies1-x^{2}\geq0

It is seen that the A.M of two numbers is \dfrac{1}{2}. Since the condition for A.M exists, we can use A.M-G.M inequality.

\implies \dfrac{x^{2}+(1-x^{2})}{2}\geq\sqrt{x^{2}(1-x^{2})}

\implies \dfrac{1}{2}\geq\sqrt{x^{2}(1-x^{2})}

\implies\sqrt{x^{2}(1-x^{2})}\leq\dfrac{1}{2}

That is

\implies0\leq x\sqrt{1-x^{2}}\leq\dfrac{1}{2}\text{ for }0\leq x\leq1

\red{\bigstar}(Application) Characteristic of the graph.

However, the graph is symmetric against the origin.

\implies-\dfrac{1}{2}\leq x\sqrt{1-x^{2}}\leq\dfrac{1}{2}

That is

\implies-\dfrac{1}{2}\leq f(x)\leq\dfrac{1}{2}

\red{\bigstar}(Application) Condition for the A.M-G.M inequality.

It is maximum when x=\sqrt{1-x^{2}},x\geq0.

According to the condition of equality, maximum and minimum occur when x=\dfrac{1}{\sqrt{2}} and x=-\dfrac{1}{\sqrt{2}} respectively.

\large\underline{\text{Conclusion}}

The range of the function is f(x)\in[-\dfrac{1}{2},\dfrac{1}{2}] and the domain is x\in[-1,1].

Attachments:

mddilshad11ab: perfect
Similar questions
Math, 9 months ago