Math, asked by Anonymous, 6 days ago

Find the range of the real function defined as:-
{f(x) =  \sqrt{2 - x}  -  \dfrac{ \sqrt{25 -  {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } }  +  |x|}

Answers

Answered by shadowsabers03
16

First let us find the domain of the function,

\small\text{$\longrightarrow f(x)=\sqrt{2-x}-\dfrac{\sqrt{25-x^2}}{\sqrt{x^2-4}}+|x|$}

The restrictions in the equations are,

  • \small\text{$2-x\in[0,\ \infty)$} from the term \small\text{$\sqrt{2-x}$}   ...(1)
  • \small\text{$25-x^2\in[0,\ \infty)$} from the term \small\text{$\sqrt{25-x^2}$}   ...(2)
  • \small\text{$x^2-4\in(0,\ \infty)$} from the term \small\text{$\sqrt{x^2-4}$} which is also the denominator of a fraction.   ...(3)

Solving (1) we get,

\small\text{$\longrightarrow x\in(-\infty,\ 2]\quad\dots(i)$}

Solving (2) we get,

\small\text{$\longrightarrow x\in[-5,\ 5]\quad\dots(ii)$}

Solving (3) we get,

\small\text{$\longrightarrow x\in(-\infty,\ -2)\cup(2,\ \infty)\quad\dots(iii)$}

Now taking (i) ∧ (ii) ∧ (iii),

\small\text{$\longrightarrow x\in[-5,\ -2)$}

This is the domain of the function. It is clear that x < 0 so |x| = -x in the definition of f(x), i.e.,

\small\text{$\longrightarrow f(x)=\sqrt{2-x}-\dfrac{\sqrt{25-x^2}}{\sqrt{x^2-4}}-x$}

Taking the first derivative of f(x), we get,

\small\text{$\longrightarrow f'(x)=-\dfrac{1}{2\sqrt{2-x}}+\dfrac{21x}{(x^2-4)\sqrt{(25-x^2)(x^2-4)}}-1$}

\small\text{$\longrightarrow f'(x)=\dfrac{21x}{(x^2-4)\sqrt{(25-x^2)(x^2-4)}}-\left(\dfrac{1}{2\sqrt{2-x}}+1\right)$}

The term \small\text{$\dfrac{1}{2\sqrt{2-x}}+1$} is always positive for every x in the domain. Let \small\text{$\dfrac{1}{2\sqrt{2-x}}+1=m,\quad m&gt;0.$}

Consider the term \small\text{$\dfrac{21x}{(x^2-4)\sqrt{(25-x^2)(x^2-4)}}.$} Here 21 > 0, x < 0 as it's clear from the domain, \small\text{$\sqrt{(25-x^2)(x^2-4)}&gt;0$} (√k is always positive if it's denominator of a fraction) and \small\text{$x^2-4&gt;0$} from (3).

Only x is negative here and the others are positive. Thus the whole term is negative. Let \small\text{$\dfrac{21x}{(x^2-4)\sqrt{(25-x^2)(x^2-4)}}=-n,\quad n&gt;0.$}

Now,

\small\text{$\longrightarrow f'(x)=-n-m=-(m+n)$}

This means f'(x) is always negative, which implies f(x) is strictly decreasing in the domain.

Hence the range of the function is in the form,

\small\text{$\longrightarrow f(x)\in\big(f(-2),\ f(-5)\big]$}

Now,

\small\text{$\longrightarrow f(-2)=\sqrt{2-(-2)}-\dfrac{\sqrt{25-(-2)^2}}{\sqrt{(-2)^2-4}}-(-2)$}

\small\text{$\longrightarrow f(-2)=4-\dfrac{\sqrt{21}}{0}$}

\small\text{$\longrightarrow f(-2)\to-\infty$}

Since f(x) is a strictly decreasing function, the value of f reduces and reduces so f(-2) must approach -∞. Or if one takes \small\text{$f(-2)\to\infty$} then it cannot be at left of range interval.

And,

\small\text{$\longrightarrow f(-5)=\sqrt{2-(-5)}-\dfrac{\sqrt{25-(-5)^2}}{\sqrt{(-5)^2-4}}-(-5)$}

\small\text{$\longrightarrow f(-5)=5+\sqrt{7}$}

Hence,

\small\text{$\longrightarrow\underline{\underline{f(x)\in\left(-\infty,\ 5+\sqrt7\right]}}$}

This is the range of the function.


amansharma264: Excellent
Similar questions