Math, asked by Anonymous, 3 days ago

Find the range of the real function defined as:-
 {f(x) = \sqrt{2 - x} - \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } } + \dfrac{x + 2}{ |x|}}

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given function is

 \rm :\longmapsto\:{f(x) = \sqrt{2 - x} - \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } } + \dfrac{x + 2}{ |x|}}

Let assume that,

\rm :\longmapsto\:g(x) =  \sqrt{2 - x}

\rm :\longmapsto\:h(x) =  \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } }

\rm :\longmapsto\:p(x) =   \dfrac{x + 2}{ |x|}

So,

Now, Let find the domain of each function.

Consider,

\rm :\longmapsto\:g(x) =  \sqrt{2 - x}

Now, g(x) is defined, if

\rm :\longmapsto\:2 - x \geqslant 0

\rm :\longmapsto\: - x \geqslant  - 2

\rm :\longmapsto\: x \leqslant  2

\bf\implies \:x \:  \in \: ( -  \infty ,2]

Now, Consider,

\rm :\longmapsto\:h(x) =  \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } }

So, h(x) is defined when

\rm :\longmapsto\:25 -  {x}^{2} \geqslant 0 \:  \: and \:  {x}^{2} - 4  > 0

\rm :\longmapsto\:{x}^{2}  - 25\leqslant 0 \:  \: and \:  {x}^{2} - 4  >  0

\rm :\longmapsto\:(x - 5)(x + 5) \leqslant 0 \:  \: and \:  \: (x - 2)(x + 2) > 0

\rm :\implies\: - 5 \leqslant x \leqslant 5 \:  \: and \:  \: x <  - 2 \:  \: or \:  \: x > 2

\bf\implies \:x \:  \in \: [ - 5, - 2) \:  \cup \: (2,5] -  -  - (2)

Now, Consider

\rm :\longmapsto\:p(x) =   \dfrac{x + 2}{ |x|}

So, p(x) is defined when

\bf\implies \:x \:  \in \: ( -  \infty ,0) \:  \cup \: (0, \infty ) -  -  - (3)

So, from equation (1), (2) and (3), we concluded that

Domain of

 \rm :\longmapsto\:{f(x) = \sqrt{2 - x} - \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } } + \dfrac{x + 2}{ |x|}}

is

\bf\implies \:x \:  \in \: [ - 5, - 2)

and

Thus,

\bf\implies \: |x| =  - x

Now, we check the monotonocity of f(x) in [ - 5, - 2)

f(x) can be rewritten as

 \rm :\longmapsto\:{f(x) = \sqrt{2 - x} - \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } }  -  \dfrac{x + 2}{ x}}

 \rm :\longmapsto\:{f(x) = \sqrt{2 - x} - \dfrac{ \sqrt{25 - {x}^{2} } }{ \sqrt{ {x}^{2} - 4 } }  -1 -   \dfrac{2}{ x}}

So, Differentiate f(x) w. r. t. x, we get

\rm :\longmapsto\:f'(x) = -  \dfrac{1}{2 \sqrt{2 - x} }  - \dfrac{1}{2 \sqrt{\dfrac{25 -  {x}^{2} }{ {x}^{2} - 4 } } }\dfrac{( {x}^{2}  - 4)( - 2x) - (25 -  {x}^{2})(2x)  }{ {x}^{2}  - 4}   - 0 +  \dfrac{1}{ {x}^{2} }

\rm :\longmapsto\:f'(x) = -  \dfrac{1}{2 \sqrt{2 - x} }   + \dfrac{1}{ \sqrt{\dfrac{25 -  {x}^{2} }{ {x}^{2} - 4 } } }\dfrac{(21x ) }{ {x}^{2}  - 4}   +  \dfrac{1}{ {x}^{2} }

\rm :\longmapsto\:As \:x \:  \in \: [ - 5, - 2)

\bf\implies \:f'(x) < 0 \:  \forall \: x \in \: [ - 5, - 2)

\bf\implies \:f(x) \: has \: maximum \: value \: at \: x =  - 5

So,

 \rm :\longmapsto\:{f( - 5) = \sqrt{2 + 5} - \dfrac{ \sqrt{25 - {5}^{2} } }{ \sqrt{ {5}^{2} - 4 } } + \dfrac{ - 5 + 2}{5}}

 \rm :\longmapsto\:{f( - 5) = \sqrt{7}  + \dfrac{ - 3}{5}}

 \rm :\longmapsto\:{f( - 5) =  - \dfrac{3}{5}} +  \sqrt{7}

So,

Range of f(x) is

\bf\implies \:f(x) \:  \in \: ( -  \infty ,  \: -  \: \dfrac{3}{5} +  \sqrt{7}  \bigg]

Similar questions