Math, asked by king158147, 3 months ago

Find the range of the real valued function √(9-x²)​

Answers

Answered by Anonymous
49

Answer:

Domain and range

 \sf \: f(x)=9−x2

 \sf y= \sqrt{9 -x { }^{2} }

 \sf  \sqrt{9 - x {}^{2} \geqslant 0 }

 \sf9 - x {}^{2 }  \geqslant 0

 \sf \: x { }^{2}  \leqslant 9

 \sf \: x≤−+3

 \sf \:x ∈[−3,3]

 \sf \: y {}^{2} =9−x2

 \sf \: x {}^{2}= 9 - y {}^{2}

 \sf \: x= \sqrt{9 - 2y {}^{2} }

 \sf9 - y {}^{2}  \geqslant 0

 \sf \: y {}^{2} ≤9 \: y∈3,−3

 \sf \: y=+ve

 \sf∵y∈[0,3]

Answered by Anonymous
10

Answer:

Find the range of the real valued function √(9-x²)

Similar questions