Math, asked by tanishqnborkar, 9 months ago

find the range of x such that given quadrilateral can exist.Explain with steps​

Attachments:

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

  •  \boxed{\bf{ 2.5^o < x < 15^o}}

  • A more accurate range of x is  \boxed{\bf{2.5^o < x ≤ 14.11^o}}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

Approximate Range

Since Angle is always positive,

\:\:\:\:\: 4x-10 > 0

\to 4x > 10

\to x > 2.5^o...(1)

Let

  • AC = CE = a
  • BC = CD = b

Using cosine formula,

\:\:\:\:\: \cos(50)-\cos(4x-10)

= \frac{a^2 + b^2 - 15^2}{2ab} -\frac{a^2 + b^2 - 14^2}{2ab}

= \frac{(a^2 + b^2 - 15^2) -(a^2 + b^2 - 14^2)}{2ab}

=\frac{- 15^2 + 14^2}{2ab}

= \frac{- 29}{2ab} < 0

\to \cos(50) < \cos(4x-10)

\to 50 > 4x-10

\to 4x-10 < 50

\to 4x < 60

\to x < 15^o...(2)

From (1) and (2), we get

\:\:\:\:\: 2.5^o < x < 15^o

A More Accurate Range

From the above analysis

 \cos(50) = \frac{a^2 + b^2 - 15^2}{2ab}.. (3)

 \cos(4x-10) = \frac{a^2 + b^2 - 14^2}{2ab}.. (4)

Substracting (3) from (4), we get

\to \cos(4x-10)-\cos(50) = \frac{29}{2ab}

\to 2ab = \frac{29}{\cos(4x-10)-\cos(50)}

\to a^2b^2 = \frac{29^2}{4[\cos(4x-10)-\cos(50)]^2}

Substituting value of ab in (3),we get

\to \cos(50) = \frac{a^2 + b^2 - 15^2}{2ab}

\to a^2 + b^2 =  15^2 + 2abcos(50)

\to a^2 + b^2 =  15^2 + \frac{29cos(50)}{\cos(4x-10)-\cos(50)}

\to a^2 + b^2 = \frac{225\cos(4x-10)-196cos(50)}{\cos(4x-10)-\cos(50)}

Quadratic equation whose roots are  a^2, b^2 is of the form

 \:\:\:\:\: t^2 - (a^2+b^2)t + a^2 b^2 = 0

Since a, b \in \R, Determinant ≥ 0

 \to (a^2+b^2)^2 - 4a^2 b^2 ≥ 0

 \to \left[\frac{225\cos(4x-10)-196cos(50)}{\cos(4x-10)-\cos(50)}\right]^2

\:\:\:\:\: - \frac{4\times 29^2}{4[\cos(4x-10)-\cos(50)]^2} ≥ 0

 \to \left[225\cos(4x-10)-196cos(50)\right]^2

 \:\:\:\:\: - 29^2 ≥ 0

 \to \left[225\cos(4x-10)-196cos(50) - 29\right]

 \left[225\cos(4x-10)-196cos(50) + 29\right] ≥ 0

 \to \cos(4x-10)≥ \frac{196cos(50) + 29}{225}

or  cos(4x-10)≤\frac{196cos(50) - 29}{225}

 \to \cos(4x-10) ≥ 0.6889

or  cos(4x-10) ≤0.4310

We already know that

\to \cos(4x-10)>cos(50)

\to \cos(4x-10)>0.643

Combining the two results we get

 \to \cos(4x-10) ≥ 0.6889

 \to 0 < 4x-10 ≤ cos^{-1}(0.6889)

 \to 0 < 4x-10 ≤ 46.458

 \to 10 < 4x ≤ 56.458

 \to \boxed{\bf{2.5 < x ≤ 14.11}}

Similar questions