Math, asked by arnavbanti, 1 month ago

find the range of y = sin(2sinx)​

Answers

Answered by IIBandookbaazII
1

$y=\sin (2 x)$</p><p>$y$ is defined $\forall x \in \mathbb{R}$ \: $\therefore$ the domain of $y$ is $(-\infty,+\

Let $\theta=2 x$</p><p>$y=\sin \theta \rightarrow-1 \leq y \leq+1 \forall \theta \in \

Hence, $y=\sin (2 x) \rightarrow-1 \leq y \leq+1 \forall \theta \in \

$\therefore$ the range of $y$ is $[-1,+1]$</p><p>We can observe the domain and range of $y$ from the graph of $\# y=\sin $\therefore$ the range of $y$ is $[-1,+1]$</p><p>We  \: can  \: observe \:  the  \: domain \:  and  \: range  \: of  \: $y$  \: from  \: the  \: graph  \: of $\# y=\sin \

$\operatorname{graph}\{\sin (2 x)[-6.25,6.234,-3.12,3.124]\}$

Similar questions