find the range of y=x^2+1/x^2-1
Answers
Answered by
3
Answer:
y ≤ - 1 , y > 1 or (-∞ , -1] ∪ (1 , ∞)
Step-by-step explanation:
⇒ y(x² - 1) = x² + 1
⇒ yx² - y = x² + 1
⇒ yx² - y - x² - 1 = 0
⇒ x²(y - 1) - (y + 1) = 0
⇒ x²(y - 1) - 0x - (y + 1) = 0
For the value of x to be real, discriminant must be 0 or greater than 0.
⇒ discriminant ≥ 0
⇒ (0)² - 4[-(y - 1)(y + 1)] ≥ 0
⇒ 4(y - 1)(y + 1) ≥ 0
⇒ 4(y - 1)(y + 1) ≥ 0
y ≤ - 1 , y > 1 [as for y=1, it will be false]
Similar questions