Math, asked by Shamitha2467, 1 year ago

find the range of y= x^2-2x+9÷x^2+2x+9

Answers

Answered by abhishekpathak191
0

Explanation:

The function is

y

=

x

2

+

14

x

+

9

x

2

+

2

x

+

3

,

y

(

x

2

+

2

x

+

3

)

=

(

x

2

+

14

x

+

9

)

,

y

x

2

+

2

y

x

+

3

y

=

x

2

+

14

x

+

9

,

y

x

2

x

2

+

2

y

x

14

x

+

3

y

9

=

0

,

(

y

1

)

x

2

+

(

2

y

14

)

x

+

(

3

y

9

)

=

0

This is a quadratic equation in

x

and in order to have solutions, the discriminant

0

Δ

=

b

2

4

a

c

0

(

2

y

14

)

2

4

(

y

1

)

(

3

y

9

)

0

4

y

2

56

y

+

196

12

y

2

+

48

y

36

0

8

y

2

+

8

y

160

0

y

2

+

y

20

0

(

y

+

5

)

(

y

4

)

0

Solving this inequality with a sign chart or graphically yields

y

[

5

,

4

]

The range is

y

[

5

,

4

]

graph{(x^2+14x+9)/(x^2+2x+3) [-10, 10, -5, 5]}

Similar questions
Science, 1 year ago