Math, asked by Fufajat, 11 months ago

Find the rank of the matrix

A= (8001 1081 0018 0118)

Answers

Answered by FelisFelis
0

Answer:

The rank of the matrix is 4.

Step-by-step explanation:

Consider the provided matrix.

The rank of a matrix is the number of non all-zeros rows

Maximum number of linearly independent column vectors in the matrix is known as the rank of a matrix.

Reduce matrix to reduced row echelon form:

Perform R_2\:\leftarrow \:R_2-\frac{1}{8}\cdot \:R_1

\begin{pmatrix}8&0&0&1\\ 0&0&8&\frac{7}{8}\\ 0&0&1&8\\ 0&1&1&8\end{pmatrix}

R_2\:\leftrightarrow \:R_4

\begin{pmatrix}8&0&0&1\\ 0&1&1&8\\ 0&0&1&8\\ 0&0&8&\frac{7}{8}\end{pmatrix}

R_3\:\leftrightarrow \:R_4

\begin{pmatrix}8&0&0&1\\ 0&1&1&8\\ 0&0&8&\frac{7}{8}\\ 0&0&1&8\end{pmatrix}

R_4\:\leftarrow \:R_4-\frac{1}{8}\cdot \:R_3

\begin{pmatrix}8&0&0&1\\ 0&1&1&8\\ 0&0&8&\frac{7}{8}\\ 0&0&0&\frac{505}{64}\end{pmatrix}

Hence, the rank of the matrix is 4.

Answered by lublana
1

Answer:

Rank of matrix=4

Step-by-step explanation:

We are given that a matrix

A=\left[\begin{array}{cccc}8&0&0&1\\1&0&8&1\\0&0&1&8\\0&1&1&8\end{array}\right]

We have to find the rank of  matrix

Apply R_4\rightarrow R_4-R_3

Then, we get

\left[\begin{array}{cccc}8&0&0&1\\1&0&8&1\\0&0&1&8\\0&1&0&0\end{array}\right]

Apply R_2\rightarrow R_2-8R_3

Then , we get

\left[\begin{array}{cccc}8&0&0&1\\1&0&0&-63\\0&0&1&8\\0&1&0&0\end{array}\right]

Apply R__1\rightarrow R_1-8R_2

\left[\begin{array}{cccc}0&0&0&505\\1&0&8&-63\\0&0&1&8\\0&1&0&0\end{array}\right]

Appiy C_3\rightarrow C_3-8C_1

\left[\begin{array}{cccc}0&0&0&505\\1&0&0&-63\\0&0&1&8\\0&1&0&0\end{array}\right]

Number of non zeroes rows=4

Hence, the rank of matrix=4

Similar questions