Math, asked by balbirsingh0216, 22 days ago

find the rate of change of circumference of a circle with respect to it's radius.
(a) π
(b) 2π
(c) 2πr
(d) 3π​

Answers

Answered by mathdude500
10

Question :-

Find the rate of change of circumference of a circle with respect to it's radius.

(a) π

(b) 2π

(c) 2πr

(d) 3π

\large\underline{\sf{Solution-}}

Let assume that radius of circle be 'r' units.

Let assume that C represents the circumference of a circle.

We know,

Circumference, C of a circle of radius r is given by

\rm \: C \:  =  \: 2 \: \pi \: r \\

On differentiating both sides w. r. t. r, we get

\rm \: \dfrac{d}{dr}C \:  =  \dfrac{d}{dr}[\: 2 \: \pi \: r ]\\

\rm \: \dfrac{d}{dr}C \:  = 2 \: \pi \:  \dfrac{d}{dr}r \: \\

\rm \: \dfrac{d}{dr}C \:  = 2 \: \pi \:   \times 1 \: \\

\rm \: \dfrac{dC}{dr} \:  = 2 \: \pi \: \: \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \: \dfrac{dC}{dr} \:  = 2 \: \pi \: \: }}\\

So, option (b) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions