Find the rate of compound interest per
annum at which 12,500 will amount to
15,680 in 2 years.
Answers
Answered by
1
Step-by-step explanation:
Here is your answer
P = Rs 12500
A = Rs 15680
R = r % let
T = 2 years , n = 2
As we know the formula
A = P (1+r/100)^n
\begin{gathered}15680 = 12500 \times (1 + \frac{r}{100} ) {}^{2} \\ \frac{15680}{12500} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{784}{625} = ( \frac{100 + r}{100} ) {}^{2} \\ ( \frac{28}{25} ) {}^{2} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{28}{25} = \frac{100 + r}{100} \\ 28 \times 100 = 25 \times 100 + 25r \\ 25r = 2800 - 2500 \\ 25r = 300 \\ r \frac{300}{25} \\ r = 12\%\end{gathered}
15680=12500×(1+
100
r
)
2
12500
15680
=(
100
100+r
)
2
625
784
=(
100
100+r
)
2
(
25
28
)
2
=(
100
100+r
)
2
25
28
=
100
100+r
28×100=25×100+25r
25r=2800−2500
25r=300
r
25
300
r=12%
Similar questions
Social Sciences,
2 months ago
English,
2 months ago
English,
6 months ago
Math,
11 months ago
English,
11 months ago