Math, asked by anitasargaiya1, 6 months ago

Find the rate of compound interest per
annum at which 12,500 will amount to
15,680 in 2 years.​

Answers

Answered by pritisriacharya01
1

Step-by-step explanation:

Here is your answer

P = Rs 12500

A = Rs 15680

R = r % let

T = 2 years , n = 2

As we know the formula

A = P (1+r/100)^n

\begin{gathered}15680 = 12500 \times (1 + \frac{r}{100} ) {}^{2} \\ \frac{15680}{12500} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{784}{625} = ( \frac{100 + r}{100} ) {}^{2} \\ ( \frac{28}{25} ) {}^{2} = ( \frac{100 + r}{100} ) {}^{2} \\ \frac{28}{25} = \frac{100 + r}{100} \\ 28 \times 100 = 25 \times 100 + 25r \\ 25r = 2800 - 2500 \\ 25r = 300 \\ r \frac{300}{25} \\ r = 12\%\end{gathered}

15680=12500×(1+

100

r

)

2

12500

15680

=(

100

100+r

)

2

625

784

=(

100

100+r

)

2

(

25

28

)

2

=(

100

100+r

)

2

25

28

=

100

100+r

28×100=25×100+25r

25r=2800−2500

25r=300

r

25

300

r=12%

Similar questions