Math, asked by varsha385, 1 year ago

find the rate percent per annum if rupees 25000 amount to rupees 26010 in 6 months interest is compounded quarterly​

Answers

Answered by mysticd
7

Answer:

 \red { Rate } \green { = 8\% }

Step-by-step explanation:

 Principal (P) = Rs\: 25000

 Amount (A) = Rs\:26010

 Let \: rate \: of \: interest \:for \\ 3 \: months =\frac{r}{4} \%

 As \: interest \: is \: compounded \: quarterly, \\So\: there \: will \: be \: 2 \: conversion \: periods\\in \: 6 \: months

 n = 2

 \boxed { \pink { A = P\left( 1+\frac{ \frac{r}{4}}{100}\right)^{n}}}

 \implies 26010 = 25000\left( 1+\frac{ \frac{r}{4}}{100}\right)^{2}

 \implies \frac{26010}{25000} = \left( 1+\frac{ r}{400}\right)^{2}

 \implies \left( \frac{51}{50}\right)^{2} = \left( 1+\frac{ r}{400}\right)^{2}

 \implies \frac{51}{50} = 1+ \frac{r}{400}

 \implies \frac{51}{50} -1 = \frac{r}{400}

 \implies \frac{51-50}{50} = \frac{r}{400}

 \implies \frac{1}{50} = \frac{r}{400}

 \implies\frac{1}{50} \times 400 = r

 \implies 8 = r

Therefore.,

 \red { Rate } \green { = 8\% }

•••♪

Similar questions