Find the ratio a : b : c if a + 2b - c = 0 & 2a - b + c = 0 .
Answers
Given : a + 2b - c = 0 & 2a - b + c = 0 .
To Find : Ratio a : b : c
Solution:
a + 2b - c =0 Eq1
2a - b + c = 0 Eq2
Adding eq 1 & eq 2
=> 3a + b = 0
=> 3a = - b
=> a/b = - 1/3
=> a : b = - 1 : `3
putting b = - 3a in Eq1
=> a + 2(-3a) - c = 0
=> a - 6a = c
=> -5a = c
=> a/c = - 1/5
=> a : c = - 1 : 5
a : b = - 1 : 3
a : c = - 1 : 5
a : b : c = -1 : 3 : 5
Lets verify
a = - 1 , b = 3 , c = 5
a + 2b - c = -1 + 6 + 5 = 0
2a - b + c = -2 - 3 + 5 = 0
a = 1 , b = -3 , c = -5
a + 2b - c = 1 - 6 + 5 = 0
2a - b + c = 2 + 3 - 5 = 0
a : b : c = -1 : 3 : 5
Learn More:
find the ratio of 4 to 5.60 - Brainly.in
https://brainly.in/question/14544779
a : b : c = 3 : 1 : 5
Step-by-step explanation:
a + 2b - c = 0 ----(1)
So c = a + 2b -----(3)
2a - b + c = 0 ----(2)
Substituting 3 in 2, we get:
2a-b = a + 2b
a = 3b ----(4)
Substituting 4 in 3, we get:
c = 3b + 2b = 5b ----(5)
So writing a, b and c in terms of b, we get:
a : b : c = 3b : b : 5b = 3: 1: 5
Let's check this using equation 1.
a + 2b - c = 3 + 2 - 5 = 0
Hence proved.