Math, asked by kabbadishot22, 11 months ago

find the ratio between the tsa and csa of a cylinder of height 14 cm and radius 7 cm

Answers

Answered by silentlover45
3

\large\underline\pink{Given:-}

  • Cylinder of Height = 14 cm
  • Cylinder of Radius = 7 cm

\large\underline\pink{To find:-}

  • Fine the ratio of the TSA and CSA of a cylinder ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \:  \therefore \: \: Total \: \: surface \: \: area \: \: cylinder \: \: = \: \: {2} \: \pi \: r \: {({r} \: + \: {h})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {7} \: {({7} \: + \: {14})}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {7} \: \times \: {21}

\: \: \: \: \: \leadsto \: \: {2} \: \times \: {22} \: \times \: {7} \: \times \: {3}

\: \: \: \: \: \leadsto \: \: {44} \: \times \: {21}

\: \: \: \: \: \leadsto \: \: {924} \: {cm}^{2}

\: \: \: \: \:  \therefore \: \: Curved \: \: surface \: \: area \: \: of Cylinder \: \: = \: \: {2} \: \pi \: r \: h

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: \frac{22}{7} \: \times \: {7} \: \times \: {14}

\: \: \: \: \:  \leadsto \: \: {2} \: \times \: {22} \: \times \: {14}

\: \: \: \: \:  \leadsto \: \: {44} \:  \times \: {14}

\: \: \: \: \:  \leadsto \: \: {616} \: {cm}^{2}

\: \: \: \: \:  \therefore \: \: Ratio \: \: = \: \: \frac{TSA \: \: of \: \: Cylinder}{CSA \: \: of \: \: Cylinder}

\: \: \: \: \:  \leadsto \: \: \frac{924}{616}

\: \: \: \: \:  \leadsto \: \: \frac{3}{2}

\: \: \: \: \:  \leadsto \: \: {3} \: : \: {2}

\: \: \: \: \: \: \: Hence, \\ \: \:\therefore \: \: The \: \: ratio \: \: of \: \: the \: \: TSA \: \: and \: \: CSA \: \: of \: \: a \: \: cylinder \: \: {3} \: : \: {2}

__________________________________

Answered by Anonymous
0

Given ,

  • The height and radius of cylinder are 14 cm and 7 cm

We know that ,

The CSA of cylinder is given by

CSA = 2πrh

Thus ,

 \sf \mapsto CSA = 2 \times  \frac{22}{7}  \times 7 \times 14 \\  \\  \sf \mapsto CSA =44 \times 14 \\  \\  \sf \mapsto CSA =616 \:  \:  {cm}^{2}

Now , the TSA of cylinder is given by

TSA = 2πrh + 2π(r)²

Thus ,

 \sf \mapsto TSA =616 + 2 \times  \frac{22}{7}  \times  {(7)}^{2}  \\  \\  \sf \mapsto TSA =616  +  44 \times 7 \\  \\ \sf \mapsto TSA =616 + 308 \\  \\ \sf \mapsto TSA = 924 \:  \:  {cm}^{3}

Thus ,

The ratio of TSA and CSA of cylinder will be

 \Rightarrow  \frac{TSA \: of \: cyilnder}{CSA \: of \: cyilnder}  =  \frac{924}{616} \\  \\   \Rightarrow  \frac{TSA \: of \: cyilnder}{CSA \: of \: cyilnder}  =  1.5

Therefore ,

  • The ratio of TSA and CSA of cylinder is 1.5

Similar questions