Math, asked by pr6433667, 9 months ago

find the ratio in which line 3x+2y=17 divide the line segment joint by point (2, 5)and (5,2)​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Points are (2,5) and (5,2)}

\textbf{To find:}

\textsf{The ratio in which the line 3x+2y-17=0 divides the}

\textsf{segment joining (2,5) and (5,2)}

\textbf{Solution:}

\textsf{The coordinats of the point which divides the line segment joining}

\textsf{(2,5) and (5,2) internally in the ratio m:n are}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{m(5)+n(2)}{m+n},\dfrac{m(2)+n(5)}{m+n}\right)}

\mathsf{\left(\dfrac{5m+2n}{m+n},\dfrac{2m+5n}{m+n}\right)}

\textsf{But, this point lies on the line 3x+2y-17=0}

\mathsf{3\left(\dfrac{5m+2n}{m+n}\right)+2\left(\dfrac{2m+5n}{m+n}\right)-17=0}

\mathsf{\dfrac{15m+6n}{m+n}+\left(\dfrac{4m+10n}{m+n}\right)-17(m+n)=0}

\mathsf{(15m+6n)+(4m+10n)-17(m+n)=0}

\mathsf{19m+16n-17m-17n=0}

\mathsf{2m-n=0}

\mathsf{2m=n}

\mathsf{\dfrac{m}{n}=\dfrac{1}{2}}

\therefore\underline{\textsf{The line divides the line joining the given points}}

\underline{\textsf{internally in the ratio 1:2}}

Similar questions