Math, asked by manjuseervi105665, 6 months ago

Find the ratio in which line segment joining the points (-3,10)and(6-8) is divided by (-1,6)

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Find the ratio in which line segment joining the points (-3,10) and (6,-8) is divided by (-1,6)

\huge{\mathtt{\purple{A}\green{N}\pink{S}\blue{W}\purple{E}\green{R}\pink{!}\blue{!}}}

 \:  \:  \twoheadrightarrow \boxed { \bf \pink{ \: to \: find \: the \: ratio}}

\gg\sf{Consider\: the \: point (-3,10) \: is \:point A \:and \: B \: as\: a (6,8)point}

 \dagger \boxed { \bf{ \: by \: using \: section \: formula}}

\divideontimes\boxed{\bf\red{x=\dfrac{mx_1+nx_2}{m+n} \: and \: y=\dfrac{my_1+ny_2}{m+n}}}

  \star  \sf{substitute \: the \: given \: values}

 \:  \:  \implies  \bf{ - 1 =  \frac{m( - 3) + n(6)}{m + n} } \:  \:  \:  \:  \: and \:  \:  \: 6 =  \frac{m(10) + n(8)}{m + n}

 \:  \:  \implies \bf{ - 1 =  \frac{m( - 3) + n( 6)}{m + n} }

 \:  \:  \implies \bf{ - m - n =  - 3m + 6n}

 \:  \:  \implies \bf{ - m - n + 3m - 6n = 0}

 \:  \:  \implies \bf{2m - 7n = 0}.......((1))

 \pink \ast  \to \bf{6 =  \frac{m(10) + n( - 8)}{m + n} }

  \:  \:  \mapsto \bf{ - 6m - 6n = 10m - 8n}

 \:  \mapsto \bf{ - 6m - 6n - 10m + 8n = 0}

 \:  \mapsto \bf{ - 16m + 2n = 0}.......(2)

 \:  \:  \boxed { \rm \red{ \: multiply \: in \: eqn(1) \: by \: 8 \: we \: get \:  16m  - 14n = 0}}

 \:  \:  \to \bf{16m -2n = 0}....(2)

 \:  \to \bf{16m - 14n = 0}.......(3)

 \:  \:  \:   \bigstar  \underline{\bf{ \: subtracting \: both \: equations}}

 \:  \implies \bf{0  + 12m = 0}

 \:  \implies \bf{m = 0}

 \implies \bf16( 0) - 14n = 0

 \:  \implies \bf{n = 0}

Answered by Anonymous
2

HIII MATE.... ur answer is attached...

Attachments:
Similar questions