Math, asked by BrainlyRuby, 7 months ago

Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence find m.​

Answers

Answered by Ladylaurel
4

Answer:

here is your answer

P(4,3) ; A(2,-) ; B(6,-3)

let the ratio be = k : 1

P (4,m) = k (6) + 1(2) / k+1

k(-3 + 1(3) / k+1

according the problem,,

4 = 6k +2 / k+1

=>2(k +1) = 3k +1

=>k = 1

and also,,

m = -3(1) +3 / (1) +1

=>m = 0/2

=>m = 0

so, your question is completed.

___________________________

Attachments:
Answered by SarcasticL0ve
14

P(4,m) divides the line segment AB joining points A(2,3) and B(6,-3).

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ Let P(4,m) divides line segment AB in ratio k : 1. \\ \\

Now, Using Section formula, \\ \\

\star\;{\boxed{\sf{\pink{(x,y) = \bigg( \dfrac{m_1 x_2 + m_2 x_1}{m_1 + m_2} , \dfrac{m_1 y_2 + m_2 y_1}{m_1 + m_2} \bigg)}}}}\\ \\

where,

  • \bf x_1 , y_1 = Coordinates of first point

  • \bf x_2 , y_2 = Coordinates of second point

  • \bf m_1 , m_2 = Ratio at which line is divided

Putting values, \\ \\

:\implies\sf (4, m) = \bigg( \dfrac{k \times 6 + 1 \times 2}{k + 1} , \dfrac{k \times - 3 + 1 \times 3}{k + 1} \bigg)\\ \\

 \qquad \quad:\implies\sf (4, m) = \bigg( \dfrac{6k + 2}{k + 1} , \dfrac{-3k + 3}{k + 1} \bigg)\\ \\

\qquad\quad:\implies\sf 4 = \dfrac{6k + 2}{k + 1} , m = \dfrac{-3k + 3}{k + 1} \\ \\

Therefore, \\ \\

\qquad\qquad:\implies\sf 4(k + 1) = 6k + 2\\ \\

 \qquad\qquad\:  \: :\implies\sf 4k + 4 = 6k + 2\\ \\

 \qquad\qquad\: :\implies\sf 4 - 2 = 6k - 4k\\ \\

 \qquad\qquad\:  \: \quad\quad:\implies\sf 2 = 2k\\ \\

 \qquad\qquad\:  \:  \qquad:\implies\sf k = \cancel{ \dfrac{2}{2}}\\ \\

\qquad\qquad\qquad:\implies{\underline{\boxed{\frak{\purple{k = 1}}}}}\;\bigstar\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\therefore P divides the line segment AB in ratio 1:1.

Also, P is the mid - point of AB. \\ \\

☯ Now, Putting value of k in, \\ \\

\qquad\qquad \qquad:\implies\sf m = \dfrac{-3k + 3}{k + 1}\\ \\

\qquad\qquad\quad:\implies\sf m = \dfrac{-3 \times 1 + 3}{1 + 1}\\ \\

\qquad\qquad\qquad:\implies\sf m =  \dfrac{-3 + 3}{2}\\ \\

\qquad\qquad\qquad\quad:\implies\sf m = \dfrac{0}{2}\\ \\

\qquad\qquad\qquad\quad:\implies{\underline{\boxed{\frak{\purple{m = 0}}}}}\;\bigstar\\ \\

\therefore Hence, The value of m is 0.

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\  \\

⠀⠀⠀⠀⠀☯ Distance Formula which is used to find the distance between two defined points. \\ \\

  • \bf \sqrt{ (x_2 - x_1)^2 + (y_2 - y_1)^2}
Similar questions