Find the ratio in which point T(_1,6) divides the line segment joining the points p(_3,10) and Q(6,_8).
Answers
Answered by
6
Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then
(x,y)=(m+nmx2+nx1,m+nmy2+ny1)
Let the required ratio be m:n
A(−6,10)=(x1,y1) and B(3,−8)=(x2,y2)
we have,
(m+nmx2+nx1,m+nmy2+ny1)=(−4,6)
⇒m+nmx2+nx1=−4
⇒m(3)+n(−6)=−4m−4n
⇒3m−6n=−4m−4n
⇒3m+4m=6n−4n
⇒7m=2n
⇒nm=72
⇒m:n=2:7
Answered by
1
Step-by-step explanation:
Let
SI/TR =R/1
From section's formula,
−1= 6R−3/RH
⇒6R−3=−R−1
⇒7R=2
⇒R=2/7
⇒ ST/TR =2/7
⇒ T divides SR is 2:7 ratio.
hope it is helpful
Similar questions