Math, asked by mithailalsaroj86, 3 months ago

find the ratio in which the line joining points (-4,7) and (3,0) is divided by y-axis​

Answers

Answered by Flaunt
194

Given

Two points A(-4,7) B(3,0)

To Find

Ratio in which line divides the points

\sf\huge\bold{\underline{\underline{{Solution}}}}

Let us assume that M (0,y) be a point on y axis

which divides the line segment PQ in the ratio k:1.

[Note:On y axis x is zero and on x axis y is zero.]

By using section formula

Finding x coordinate :

\sf \longmapsto0 =  \dfrac{m_{1}x_{2} + m_{2}x_{1}}{m + n}

\sf \longmapsto 0 =  \dfrac{k \times 3 + 1 \times ( - 4)}{k + 1}

\sf \longmapsto0 =  \dfrac{3k - 4}{k + 1}

\sf \longmapsto3k = 4

\sf \longmapsto \: k =  \dfrac{4}{3}

Now , finding y coordinate

\sf \longmapsto \: y =  \dfrac{m_{1}y_{2}+ m_{2}y_{1}}{m + n}

\sf \longmapsto \: y =  \dfrac{m \times 0 + 1 \times 7}{k + 1}

\sf \longmapsto \: y =  \dfrac{7}{k + 1}

\sf \longmapsto \: y =  \dfrac{7}{ \dfrac{4}{3}  + 1}  =  \dfrac{7}{ \dfrac{7}{3} }  = 3

 \sf \bold{y = 3}

∴ The required ratio is 4:3 and required point is M (0,3)

Attachments:
Similar questions