Math, asked by chitrakshvaishnav24, 9 months ago

find the ratio in which the line segment A(1,-5​

Attachments:

Answers

Answered by Anonymous
16

Answer:

\\

The coordinates of P are P(7,2) or P(1,0).

\\\\

Given:

\\

Two points:

  • A(3,4)

\\

  • B(5,-2)

\\

PA = PB

\\

Area of \trianglePAB = 10 sq. units

\\\\

To Find:

\\

The coordinates of P.

\\\\

Solution:

\\

Let the coordinates of P be P(x,y).

\\

We know that,

Area of a triangle = \sqrt{s(s-a)(s-b)(s-c)}

\\

Let the side AB , PB and PA be a , b and c respectively.

\\

Using Distance Formula,

  • Distance Formula = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

\\

First, calculating AB.

AB = \sqrt{(5-3)^2+(-2-4)^2}

AB = \sqrt{4+36}

AB = \sqrt{40}

\\

Now, calculating PB.

PB = \sqrt{(x-5)^2+(y+2)^2}

PB = \sqrt{x^2+25-10x+y^2+4+8y}

PB = \sqrt{x^2+y^2-10x+8y+29}

\\

Now , calculating PA

PA = \sqrt{(x-3)^2+(y-4)^2}

PA = \sqrt{x^2+9-6x+y^2+16-8y}

PA = \sqrt{x^2+y^2-6x-8y+25}

\\

Since,

PA = PB

\sqrt{x^2+y^2-6x-8y+25} =\sqrt{x^2+y^2-10x+8y+29}

Squaring both sides, we get:

x^2+y^2-6x-8y+25-x^2-y^2+10x-8y-29=0

x-3y = 1

x = 3y+1 ....(1)

\\

We know that,

Semi Perimeter = \dfrac{a+b+c}{2}

\\

Here,

a = \sqrt{40}

b = c = \sqrt{x^2+y^2-10x+4y+29}

Semi Perimeter = \dfrac{\sqrt{40}+\sqrt{x^2+y^2-10x+4y+29}+\sqrt{x^2+y^2-10x+4y+29}}{2}

Semi Perimeter = \cancel{2}\left(\dfrac{\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}}{\cancel{2}}\right)

Semi Perimeter = \sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}

\\

We know that,

Area of \trianglePAB=\sqrt{\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}(\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}-\sqrt{40})(\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}-\sqrt{x^2+y^2-10x+4y+29})(\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}-\sqrt{x^2+y^2-10x+4y+29})}

10 = \sqrt{\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}(\sqrt{10}+\sqrt{x^2+y^2-10x+4y+29}-2\sqrt{10})(\sqrt{10})(\sqrt{10})}

10 = \sqrt{(\sqrt{x^2+y^2-10x+4y+29}+\sqrt{10})(\sqrt{x^2+y^2-10x+4y+29}-\sqrt{10})(10)}

\\

We know that,

(a+b)(a-b) = (a^2-b^2)

\\

10 = \sqrt{(x^2+y^2-10x+4y+29+10)(10)}

Squaring both sides , we get:

100 = (x^2+y^2-10x+4y+29-10)10

10 = x^2+y^2-10x+4y+29-10

Substituting the value of x from (1),

10 = (3y+1)^2+y^2-10(3y+1)+4y+19

9y^2+y^2+6y+4y-30y-10+1+19-10=0

10y^2-20y=0

10y(y-2)=0

y = 0 or y = 2

\\

Substituting both values of y in (1).

x = 3*0+1 or x = 3*2+1

x = 1 or x = 7.

\\

Therefore, the coordinates of P are P(1,0) or P(7,2).

\\\\

Similar questions