Math, asked by navyashree09, 5 months ago

Find the ratio in which the line segment joining A( 1,-5 ) and B ( -4,5) is divided by the x- axis. Also

find the coordinates of the point of division​

Answers

Answered by Anonymous
3

(refer to the attachment)

★GIVEN★

  • Coordinate of A(1,-5) = x.
  • Coordinate of B(-4,5) = y.
  • The line is divided by x-axis.

★To Find★

  • The ratio in which the line segment joining.
  • The coordinates of the point of division.

★SOLUTION★

Coordinate of point P is (x,0) because the line is divided by x-axis.

Let the ratio (m : n) be (k : 1).

  • m = k and n = 1.
  • \large{\sf{Let\:x_{1}\:and\:x_{2}\:be\:1,-4\:respectively.}}
  • \large{\sf{Let\:y_{1}\:and\:y_{2}\:be\:-5,5\:respectively.}}

We know that,

\large{\orange{\underline{\boxed{\bf{For\:x=\dfrac{mx_{2}+nx_{1}}{m+n}}}}}}

\large{\orange{\underline{\boxed{\bf{For\:y=\dfrac{my_{2}+ny_{1}}{m+n}}}}}}

Now,

Coordinate of P is (0,x).

Putting the values,

For x,

\large\implies{\sf{\dfrac{mx_{2}+nx_{1}}{m+n}}}

\large\implies{\sf{\dfrac{k\times(-4)+1\times1}{k+1}}}

\large\implies{\sf{\dfrac{-4k+1}{k+1}\quad\:{\bf\orange{eq.(i)}}}}

For y,

\large\implies{\sf{\dfrac{my_{2}+ny_{1}}{m+n}}}

\large\implies{\sf{\dfrac{k\times5+1\times(-5)}{k+1}}}

\large\implies{\sf{\dfrac{5k+(-5)}{k+1}}}

\large\implies{\sf{\dfrac{5k-5}{k+1}\quad\:{\bf\orange{eq.(ii)}}}}

Now according to the question,

\large\implies{\sf{\dfrac{5k-5}{k+1}=0}}

\large\implies{\sf{5k-5=0\times\:(k+1)}}

\large\implies{\sf{5k-5=0}}

\large\implies{\sf{5k=5}}

\large\implies{\sf{k=\dfrac{5}{5}}}

\large\implies{\sf{k=\dfrac{\cancel{5}}{\cancel{5}}}}

\large\therefore\boxed{\bf{k=1}}

So by putting the value of k = 1 in eq.(i),

\large\implies{\sf{\dfrac{-4k+1}{k+1}=x}}

\large\implies{\sf{\dfrac{(-4)\times1+1}{1+1}=x}}

\large\implies{\sf{\dfrac{(-4)+1}{2}=x}}

\large\implies{\sf{\dfrac{-4+1}{2}=x}}

\large\implies{\sf{-3=2x}}

\large\implies{\sf{\dfrac{-3}{2}=x}}

\large\therefore\boxed{\bf{x=\dfrac{-3}{2}}}

\large{\orange{\underline{\boxed{\therefore{\bf{Coordinate\:of\:P(\dfrac{-3}{2},0).}}}}}}

\large{\orange{\underline{\boxed{\therefore{\bf{The\:Ratio\:is\:(1:1).}}}}}}

Attachments:
Answered by sneha070204
3

Answer:

hii epdii irukaa... ☺☺☺

Similar questions