Math, asked by PalakBansal, 5 months ago

find the ratio in which the line segment joining the points (-2, 4,7) and (3, -5, 8) divided by yz plane​

Answers

Answered by MaheswariS
4

\textbf{Given:}

\textsf{Points are A(-2,4,7) and B(3,-5,8)}

\textbf{To find:}

\textsf{Point of intersection of line segment joining A and B with yz plane}

\textbf{Solution:}

\textsf{The equation of line joining A and B is}

\mathsf{\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}=\dfrac{z-z_1}{z_2-z_1}}

\mathsf{\dfrac{x+2}{3+2}=\dfrac{y-4}{-5-4}=\dfrac{z-7}{8-7}}

\mathsf{\dfrac{x+2}{5}=\dfrac{y-4}{-9}=\dfrac{z-7}{1}}

\textsf{It meets yz plane}

\mathsf{That\;is\;x=0}

\mathsf{\dfrac{2}{5}=\dfrac{y-4}{-9}=\dfrac{z-7}{1}}

\implies\mathsf{\dfrac{2}{5}=\dfrac{y-4}{-9}}

\implies\mathsf{\dfrac{-18}{5}=y-3}

\implies\mathsf{y=\dfrac{-18}{5}+3}

\implies\mathsf{y=\dfrac{-3}{5}}

\mathsf{and}

\mathsf{\dfrac{2}{5}=z-7}

\implies\mathsf{z=\dfrac{2}{5}+7}

\implies\mathsf{z=\dfrac{37}{5}}

\therefore\textsf{The point of intersection is}

\mathsf{\left(0,\dfrac{-3}{5},\dfrac{37}{5}\right)}

Similar questions