Math, asked by vachanasomshekar, 4 months ago

Find the ratio in which the line segment joining the points (8,7) and (-2,2) is divided by (0,3).

Please answer fast...
Please do not spam
Quality answers only..​


Sanudeep: pls mark it as brainliest

Answers

Answered by Sanudeep
1

Step-by-step explanation:

let the ratio be k:1

therefore,

p(x, y)= ( \frac{ - 2 \times k + 8 \times 1}{k  + 1} ),( \frac{2 \times k + 7 \times 1}{k + 1} )

x \:  =  \:   \frac{ - 2k + 8}{k + 1}  \\  =  >  \: 0 =  \frac{ - 2k + 8}{k + 1}  \\  =  >  - 2k + 8 = 0 \\  =  >  2k = 8 \\  =  > k = 4

y =  \frac{2k + 7}{k + 1}  \\  =  > 3 =  \frac{2k + 7}{k + 1}  \\  =  > 3k + 3 = 2k + 7  \\  =  > 3k - 2k = 7 - 3  \\  =  > k = 4

therefore, ratio = k:1

=4:1

pls mark it as brainliest


vachanasomshekar: Thankyou so much mate!!!
Answered by Anonymous
3

Given :

The ratio in which the line segment joining the points (8,7) and (-2,2) is divided by (0,3).

To Find :

The ratio.

Solution :

Analysis :

Here the section formula is used. We first have to assume the ratio then substitute the required formulas in the formula and equate it to find the ratio.

Required Formula :

Section Formula,

\normalsize\boxed{\bf(x,y)=\left(\dfrac{m_1x_2+m_2x_1}{m_1+m_2},\dfrac{m_1y_2+m_2y_1}{m_1+m_2}\right)}

where,

  • (x, y) = Coordinates of point formed
  • (x₁, y₁) = Coordinates of first point
  • (x₂, y₂) = Coordinates of second point

Explanation :

  • Let the point (8, 7) be P.
  • Let the point (2, -2) be Q.
  • Let the point (0, 3) be PQ.

  • PQ = (0, 3)

Let us assume that the ratio is k : 1.

  • k = m₁
  • 1 = m

According to the question,

 \\ :\implies\normalsize\sf(x,y)=\left(\dfrac{m_1x_2+m_2x_1}{m_1+m_2},\dfrac{m_1y_2+m_2y_1}{m_1+m_2}\right)

where,

  • x = 0
  • y = 3
  • x₁ = 8
  • x₂ = -2
  • y₁ = 7
  • y₂ = 2
  • m₁ = k
  • m₂ = 1

Using the required formula and substituting the required values,

 \\ :\implies\normalsize\sf(0,3)=\left(\dfrac{k.-2+1.8}{k+1},\dfrac{k.2+1.7}{k+1}\right)

 \\ :\implies\normalsize\sf(0,3)=\left(\dfrac{-2k+8}{k+1},\dfrac{2k+7}{k+1}\right)

Here,

 \\ :\implies\normalsize\sf0=\left(\dfrac{-2k+8}{k+1}\right)\qquad\qquad\Bigg\lgroup\bf eq.(i)\Bigg\rgroup

and

 \\ :\implies\normalsize\sf3=\left(\dfrac{2k+7}{k+1}\right)\qquad\qquad\Bigg\lgroup\bf eq.(ii)\Bigg\rgroup

From eq.(i) :

 \\ :\implies\normalsize\sf0=\left(\dfrac{-2k+8}{k+1}\right)

By cross multiplying,

 \\ :\implies\normalsize\sf0\times k+1=-2k+8

 \\ :\implies\normalsize\sf0=-2k+8

Transposing 8 to LHS,

 \\ :\implies\normalsize\sf0-8=-2k

 \\ :\implies\normalsize\sf-8=-2k

 \\ :\implies\normalsize\sf\dfrac{-8}{-2}=k

 \\ :\implies\normalsize\sf\cancel{\dfrac{-8}{-2}}=k

 \\ :\implies\normalsize\sf4=k

 \\ \normalsize\therefore\boxed{\bf k=4.}\qquad\bf(eq.(iii))

From eq.(ii) :

 \\ :\implies\normalsize\sf3=\left(\dfrac{2k+7}{k+1}\right)

By cross multiplying,

 \\ :\implies\normalsize\sf3(k+1)=2k+7

Expanding the brackets,

 \\ :\implies\normalsize\sf3k+3=2k+7

Transposing 2k to LHS and 3 to RHS,

 \\ :\implies\normalsize\sf3k-2k=7-3

 \\ :\implies\normalsize\sf k=4

 \\ \normalsize\therefore\boxed{\bf k=4.}\qquad\bf(eq.(iv))

From eq.(iii) and eq.(iv),

The value of k is same.

Therefore, k = 4.

The ratio is k : 1 = 4 : 1.

The ratio dividing the line is 4 : 1.

Similar questions