Math, asked by NainaMehra, 1 year ago

Find the ratio in which the point ( -3 , k ) divides the line segment joining the points ( -5, -4 ) and ( -2, 3 ), Also find the value of k.

Answers

Answered by amisha7643
8
hope this will help u
Attachments:

NainaMehra: and where is the vale of k.
amisha7643: sorry i forgot that
amisha7643: put this ratio and equate. the following equation
Anonymous: see mine its better and pls. guys follow me. and mark my ans. as brainlist
Answered by Anonymous
22
\tiny{\mathsf{SOLUTION;-}}

\tiny{\mathsf{Given;-}}

 \implies\tiny{ \mathsf{let \: p( - 3, \: k) \: divide \: ab \: in \: the \: ratio \: \: (a \ratio1)}} \\ \\ \\ \implies\tiny{ \mathsf{now \: by \: using \: section \: formula \: the \: coordinates \: of \: p \: are}} \\ \\ \\ \implies \tiny{ \mathsf{p( \frac{ - 2a - 5}{a + 1} \:, \frac{3a - 4}{a + 1}}}) \\ \\ \\ \implies \tiny{ \mathsf{using \: p( - 3, \: k)}} \\ \\ \\ \implies \tiny{ \mathsf{ \frac{ - 2a - 5}{a + 1} = - 3 \: \: and \: \: \frac{3a - 4}{a + 1} = k}} \\ \\ \implies \tiny{ \mathsf{ - 2a - 5 = - 3a - 3}} \\ \\ \implies \tiny{ \mathsf{ - 2a + 3a = - 3 + 5}} \\ \\ \implies \tiny{ \mathsf{a = 2}} \\ \\ \implies { \fbox{\tiny{ \mathsf{hence \: the \: required \: ratio \: is \: 2 \ratio1}}}} \\ \\ \\ \implies \: \tiny{ \mathsf{putting, \: a= 2}} \\ \\ \implies \tiny{ \mathsf{\frac{3(a) - 4}{(a) + 1} = k}} \\ \\ \\\implies \tiny{ \mathsf{\frac{3(2) - 4}{(2) + 1} = k}} \\ \\ \implies \tiny{ \mathsf{ \frac{6 - 4}{3} = k}} \\ \\ \implies \tiny{ \mathsf{k = \frac{2}{3}}} \\ \\ \\ \implies \tiny{ \mathsf{ \fbox{ \: hence ,\: k = \frac{2}{3}}}}

Anonymous: :)
Anonymous: Thanks
Similar questions