Math, asked by tejashwini28, 7 months ago

Find The Ratio In Which the point P(2,1) divide the line joining the points A(2,7) and B(2,-3).

Attachments:

Answers

Answered by Cynefin
104

 \LARGE{ \underline{\underline{ \sf{Required \: answer:}}}}

GiveN:

  • The points are A(2,7) and B(2,-3).
  • The point which divides them is P(2,1)

To Find:

  • The ratio in which P divides AB?

Step-by-step Explanation:

Let the ratio be k:1

Hence, m1 = k and m2 = 1

Also, if we see the points:

  • x1 = 2 and y1 = 7
  • x2 = 2 and y2 = -3
  • x = 2 and y = 1

Using Section formula,

 \cdot{ \boxed{ \rm{x =  \frac{m1x2 + m2x1}{m1 + m2} \:}} \boxed{ \rm{ \: y =  \frac{m1y2 + m2y1}{m1 + m2} }}}

Putting the given values,

 \rm{1 =  \dfrac{k( - 3) + 1(7)}{k + 1} }

Cross multiplying,

⇒ k + 1 = -3k + 7

⇒ k + 3k = 6

⇒ 4k = 6

⇒ k = 3/2

The ratio is k : 1

⇒ 3/2 : 1

⇒ 3 : 2

Hence, the ratio is 3 : 2 (Ans)

Answered by Anonymous
124

Given

  • A line joining the points A(2,7) and B(2,-3).
  • Point P(2,1) divide the line.

To find

  • The Ratio in which the point P(2,1) divide the line.

Solution

\sf\pink{⟶} Let the ratio be k:1.

Here

  • x_1 = 2\: and\: x_2 = 2
  • y_1 = 7\: and\: y_2 = -3
  • m_1 = k\: and\: m_2 = 1

\sf\pink{⟶} Using the section formula

\underline{\boxed{\tt{P(x,y) = \dfrac{m_1x_2 + m_2x_1}{m_1 + m_2},\dfrac{m_1y_2 + m_2y_1}{m_1 + m_2}}}}

\tt:\implies{P(2.1) = \dfrac{2k + 2}{k + 1},\dfrac{(-3k) + 7}{k + 1}}

\sf\pink{⟶} On comparing,

\tt:\implies{\dfrac{2k + 2}{k + 1} = 2\: and\: \dfrac{(-3k) + 7}{k + 1} = 1}

\tt:\implies{\cancel{2k + 2} = \cancel{2k + 2}\: and\: k + 1 = -3k + 7}

\tt:\implies{k + 1 = -3k + 7}

\tt:\implies{k + 3k = 7 - 1}

\tt:\implies{4k = 6}

\tt:\implies{k = \dfrac{6}{4}}

\tt:\implies{k = \dfrac{3}{2}}

\sf\pink{⟶} Therefore, the point P(2,1) divides the line AB in \dfrac{3}{2}:1, i.e., 3:2

\sf\pink{⟶} Solution = 3:2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions