Math, asked by dhrutiavadhani, 8 months ago

Find the ratio in which the point P(m, 6) divides the line segment joining the points A(-4, 3) and B(2, 8). Also find the value of m. detailed long answer required

Answers

Answered by aryan073
11

Answer:

m=-4m+2n/m+n

m²+mn=-4m+2n

m²+4m+mn+2n

m²+4m+n(m+2)=0

use formula method u get urs answer

Step-by-step explanation:

6=3m+8n/m+n

6m+6n-3m-8n=0

3m-2n=0

Answered by Skyllen
30

Answer

Ratio => 3/2:1

Value of m => -3/5

Formula

Coordinates of point:

 \bf \:  \:  \: x =  \dfrac{m x_{2} +n x_{1} }{m + n}

\bf \:  \:  \: y =  \dfrac{m y_{2} +n y_{1} }{m + n}

Solution

Let the ratio in which point P divides the line segment be k:1.

Coordinates of P will be,

 \bf \: P( x,y )  = > ( \dfrac{2k  - 4}{k + 1} \: , \:  \dfrac{8k + 3}{k + 1}  )

Given, the coordinates of P as (m,6)

 \sf \: \dfrac{2k - 4}{k + 1}  = m \\  \sf \: 2k - 4 = m(k + 1) \\  \sf \: 2k - 4 = km + m....eq(1)

  \sf\dfrac{8k + 3}{k + 1}  = 6   \\ \\ \sf \: 8k + 3 = 6k + 6 \\  \\ \sf \: 2k = 3  \\  \\ \sf \: k =  \dfrac{3}{2}

 \therefore \sf \: ratio \: is \:  \implies \boxed{ \red{ \frac{3}{2} :1}}

Now, put k=3/2 in eq(1),

 \sf \: 2k - 4 = km + m \\  </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\sf \: 2 \times  \frac{3}{2}  - 4 =  \frac{2}{3}  \times m + m  \\  </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\sf \: 3 - 4 =  \frac{2m}{3}  + m \\ </strong><strong>\</strong><strong>\</strong><strong> \sf \: - 1 =  \dfrac{2m + 3m}{3}  \\  </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\sf - 3 = 5m \\  </strong><strong>\</strong><strong>\</strong><strong> </strong><strong>\sf \: \boxed{ \red{m =  \frac{ - 3}{5} }}

Similar questions