Math, asked by aparnam94, 3 months ago

Find the ratio in which the straight line 2x+3y-20=0 divides the join of the points (2,3) and (2,10) also state whether the points are on the same side or on opposite sides of the straight line.​

Answers

Answered by chinthamallavenkat
0

Answer:

msksksoepwuwsggshslzlz

Answered by knjroopa
0

Step-by-step explanation:

Given Find the ratio in which the straight line 2x+3y-20=0 divides the join of the points (2,3) and (2,10) also state whether the points are on the same side or on opposite sides of the straight line.

  • Let the ratio be k : 1 (m : n)  
  • Let the points of A and B be (2,3) and (2,10)
  • By section formula coordinates of  
  • C = (m x2 + n x1 / m + n , m y2 + n y1 / m + n)
  •      = (k (2) + 1(2) / k + 1 , k(10) + 1(3) / k + 1)
  •      = (2k + 2 / k + 1, 10 k + 3 / k + 1)
  •       = (2 (k + 1) / k + 1 , 10 k + 3 / k + 1 )
  •        = (2 , 10 k + 3 / k + 1)
  • So C satisfies the equation of the line 2x + 3y – 20 = 0
  •        So substituting x and y we get
  •             2 (2) + 3(10 k + 3 / k + 1) – 20 = 0
  •              4 + 30 k + 9 / k + 1 – 20 = 0
  •                  30 k + 9 / k + 1 = 16
  •                    30 k + 9 = 16 k + 16
  •                     30 k – 16 k = 16 – 9
  •                                14 k = 7
  •                                    k = 7/14
  •                          Or k = ½
  • Therefore ratio will be 1 : 2
  • Substituting the points (2,3) and (2,10) we get
  • 2(2) + 3(3) - 20 = 0
  •          - 7 < 0
  •  2 (2) + 3(10) - 20 = 0
  •           14 > 0
  • Since we have one negative and one positive the given points lie on the opposite side of the line.

Reference link will be

https://brainly.in/question/22172278

Similar questions