Math, asked by vigneshkevil, 2 months ago

Find the ratio in which the x-axis divides the line segment joining

the points A (3, 6) and B (12, -3)​

Answers

Answered by Anonymous
11

\huge\green\bigstar{SoLuTiOn}

Step by step explanation:-

Given :-

  • The x axis divides line segment of points A (3,6) B (12, -3)

To find :-

Ratio of x axis

Concept to know :-

If the cordinates of \sf{(x_1, y_1)} , \sf{(x_2,y_2} x axis divides the line segment in ratio \sf\dfrac{-y_1}{y_2}

Solution:-

So, A (3, 6) and B (12, -3) are the points

\sf{x_1 = 3}

\sf{x_2 = 12}

\sf{y_1 = 6}

\sf{y_2 = -3}

So, it divides x axis in ratio \sf\dfrac{-y_1}{y_2}

= \sf\dfrac{-6}{-3}

= \sf\dfrac{6}{3}

= \sf\dfrac{3\times2}{3}

= \sf\dfrac{2}{1}

So, the x axis divides the line segment in ratio 2:1

___________________

Know more :-

Distance formula :-

\sf\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}

Mid point formula:-

\sf\dfrac{x_1 +x_2}{2}, \sf\dfrac{y_1+y_2}{2}

Centroid formula:-

\sf\dfrac{x_1 +x_2+x_3}{3}, \sf\dfrac{y_1+y_2+y_3}{3}

Section formula for Internal division

\sf\dfrac{mx_2+nx_1}{m+n},\sf\dfrac{my_2+ny_1}{m+n}

Section formula for External division

\sf\dfrac{mx_2-nx_1}{m-n},\sf\dfrac{my_2-ny_1}{m-n}

Similar questions