find the ratio in which the y axis divides the line segment joining the points 5, -2 and -1, - 4 also find the point of intersection
Answers
Answered by
1
ratio is K:1 point is p(0,y)
using section formula ratio is
m:n=K:1
section formula for point x
![{mx2 + nx1 \div m + n} {mx2 + nx1 \div m + n}](https://tex.z-dn.net/?f=%7Bmx2+%2B+nx1+%5Cdiv+m+%2B+n%7D)
by substituting values
K(-1)+1(5)÷K+1=0
-K+5÷K+1=0
-K+5=0
-K=-5
so K=5
section formula for point y
![my2 + ny1 \div m + n my2 + ny1 \div m + n](https://tex.z-dn.net/?f=my2+%2B+ny1+%5Cdiv+m+%2B+n)
substituting values
5(-4)+1(-2)÷5+1=y
-20-2÷6=y
using section formula ratio is
m:n=K:1
section formula for point x
by substituting values
K(-1)+1(5)÷K+1=0
-K+5÷K+1=0
-K+5=0
-K=-5
so K=5
section formula for point y
substituting values
5(-4)+1(-2)÷5+1=y
-20-2÷6=y
Answered by
0
Answer:
ratio is K:1 point is p(0,y)
using section formula ratio is
m:n=K:1
section formula for point x
{mx2 + nx1 \div m + n}mx2+nx1÷m+n
by substituting values
K(-1)+1(5)÷K+1=0
-K+5÷K+1=0
-K+5=0
-K=-5
so K=5
section formula for point y
my2 + ny1 \div m + nmy2+ny1÷m+n
substituting values
5(-4)+1(-2)÷5+1=y
-20-2÷6=y
Similar questions