Math, asked by Anonymous, 7 days ago

Find the ratio of (4x - 5y) & (5y + 2y) if (2x - y) : (2x + 4y) = 1:4

Please explain this to me fully!

And please don't spam!

I need correct answer urgently with explanation!...

________________

And thank ya'again for your answer!! :) ​

Answers

Answered by amansharma264
84

EXPLANATION.

Ratio of (4x - 5y) & (5x + 2y).

If (2x - y) : (2x + 4y) = 1 : 4.

As we know that,

⇒ (2x - y) : (2x + 4y) = 1 : 4.

⇒ (2x - y)/(2x + 4y) = 1/4.

⇒ 4(2x - y) = 1(2x + 4y).

⇒ 8x - 4y = 2x + 4y.

⇒ 8x - 2x = 4y + 4y.

⇒ 6x = 8y.

⇒ 3x = 4y.

⇒ x = 4y/3.

To find :

(4x - 5y).

⇒ (4 x 4y/3 - 5y).

⇒ (16y/3 - 5y).

⇒ (16y - 15y/3). = y/3. - - - - - (1).

(5x + 2y).

⇒ (5 x 4y/3 + 2y).

⇒ (20y/3 + 2y).

⇒ (20y + 6y)/3.

⇒ (26y/3). - - - - - (2).

Ration of equation (1) : (2).

⇒ y/3 : 26y/3.

⇒ 1 : 26 = 1/26.

Answered by MrImpeccable
94

QUESTION:

  • Find the ratio of (4x - 5y) & (5x + 2y) if (2x - y) : (2x + 4y) = 1:4

ANSWER:

Given:

  • (2x - y) : (2x + 4y) = 1 : 4

To Find:

  • (4x - 5y) : (5x + 2y)

Solution:

We are given that,

\implies (2x - y) : (2x + 4y) = 1 : 4

So,

\implies \dfrac{2x - y}{2x + 4y} = \dfrac{1}{4}

On cross multiplying,

\implies 4(2x-y)=1(2x+4y)

\implies 4\!\!\!/^{\:2}(2x-y)=2\!\!\!/(x+2y)

So,

\implies 2(2x-y)=x+2y

Solving the brackets,

\implies 4x-2y=x+2y

Transposing x to LHS,

\implies 4x-2y-x=2y

So,

\implies 3x-2y=2y

Transposing -2y to RHS,

\implies 3x=2y+2y

So,

\implies 3x=4y

Transposing 3 to RHS,

\implies x=\dfrac{4}{3}y - - - -(1)

Now, we need to find the value of,

\implies (4x - 5y) : (5x + 2y)

So,

\implies \dfrac{4x - 5y}{5x + 2y}

Substituting value of x from (1),

\implies \dfrac{4x - 5y}{5x + 2y}

\implies \dfrac{4\left(\frac{4y}{3}\right) - 5y}{5\left(\frac{4y}{3}\right) + 2y}

So,

\implies \dfrac{\frac{16y}{3}- 5y}{\frac{20y}{3}+ 2y}

Taking LCM,

\implies \dfrac{\left(\frac{16y-15y}{3}\right)}{\left(\frac{20y+6y}{3}\right)}

So,

\implies \dfrac{\left(\frac{y}{3}\right)}{\left(\frac{26y}{3}\right)}

Canceling 3,

\implies \dfrac{\left(\frac{y}{3\!\!\!/}\right)}{\left(\frac{26y}{3\!\!\!/}\right)}

So,

\implies \dfrac{y}{26y}

Canceling y,

\implies \dfrac{1}{26}

So,

\implies 1:26

Therefore,

\implies\bf (4x - 5y) : (5x + 2y) = 1 : 26

Similar questions