Math, asked by dhanajayan27, 7 months ago

find the ratio of curved surface area of cone if the diameter of base and equal and the Slate height or in a ratio 4:3​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
21

Answer:

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){5.6}}\put(3,2){\line(0,2){4.5}}\put(2.4,1.7){\large{$ \sf d_1 = d_2$}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(0.5,5){\large $\sf l_1 = l_2$}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

  • Diameter of two cones are equal
  • The Ratio of their slant heights is 4:3
  • Ratio of their CSA?

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • We are given that the diameters are equal which means d¹ = d² so then their Radius will be

\displaystyle\sf\dag \: Radius = \dfrac{D}{2}

  • Similarly the the Ratio of the slant heights are 4:3

\displaystyle\sf \dag \: \dfrac{l_1}{l_2} = \dfrac{4}{3}

\displaystyle\underline{\bigstar\:\textsf{Ratio of their CSA :}}

\displaystyle\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{\pi r_1l_1}{\pi r_2l_2}\\\\

\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{\pi \times\frac{D}{2}\times 4}{\pi \times\frac{D}{2}\times 3}\\\\

\displaystyle\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{4}{3}\\\\

\displaystyle\sf \dashrightarrow CSA_1 : CSA_2 = 4:3

\displaystyle\therefore\:\underline{\textsf{The Ratio of their sides will be \textbf{ 4:3 }}}

Answered by Anonymous
42

 \bigstar\huge\bf{\underline{\underline{\purple{question:}}}}

find the ratio of curved surface area of cone if the diameter of base and equal and the Slate height or in a ratio 4:3

 \bigstar\huge\bf{\underline{\underline{\purple{given:}}}}

Diameter of two cones are equal

The Ratio of their slant heights is 4:3

 \bigstar\huge\bf{\underline{\underline{\purple{find:}}}}

Ratio of their CSA?

\displaystyle\underline{\bigstar\:\textsf{ \pink According  \pink to \pink the \pink given  \pink Question :}}

 \bf \large\ d¹ = d²

 \bf \: \sf\dag \: Radius = \dfrac{D}{2}

 \bf \ ratio \dag  \ = 4 \ratio3

\displaystyle\sf \dag \: \dfrac{l_1}{l_2} = \dfrac{4}{3}†

\bf{\underline{\underline{\purple{   \underline{\bigstar\:\textsf{Ratio of their CSA :}} </p><p> \: :}}}} </p><p></p><p>

\begin{gathered}\displaystyle\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{\pi r_1l_1}{\pi r_2l_2}\\\\\end{gathered}

\begin{gathered}\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{\pi \times\frac{D}{2}\times 4}{\pi \times\frac{D}{2}\times 3}\\\\\end{gathered}

\begin{gathered}\displaystyle\sf \dashrightarrow \dfrac{CSA_1}{CSA_2} = \dfrac{4}{3}\\\\\end{gathered}

\displaystyle\sf \dashrightarrow CSA_1 : CSA_2 = 4:3

 \displaystyle\therefore\:\bf{\textsf{The Ratio of their sides will be \textbf{ 4:3 }}}

Similar questions