Find the ratio of kinetic energy required to be given to the satellite to escape earth's
Answers
Answered by
2
The energy needed to raise the satellite to a height 'h' is
Δv=vA−vBΔv=vA−vB
=−GMmR+h−(−GMmR)=−GMmR+h−(−GMmR)
=GMmhR(R+h)=GMmhR(R+h)
=GMmhR2(1+hR)GMR2=GMmhR2(1+hR)GMR2=g=g
=mgh(1+hR)=mgh(1+hR)=E1=E1
E2=E2= energy of the satellite
=12=12mv20(v0−mv02(v0−orbital velocity )
r- distance of satellite from center of earth
=12=12m(GMr)m(GMr)
=12=12m(GMR+h)m(GMR+h)
=12=12m(GMR2)R(1+hR)m(GMR2)R(1+hR)
E2=mgR2(1+hR)E2=mgR2(1+hR)
∴E1E2∴E1E2=2hR
Δv=vA−vBΔv=vA−vB
=−GMmR+h−(−GMmR)=−GMmR+h−(−GMmR)
=GMmhR(R+h)=GMmhR(R+h)
=GMmhR2(1+hR)GMR2=GMmhR2(1+hR)GMR2=g=g
=mgh(1+hR)=mgh(1+hR)=E1=E1
E2=E2= energy of the satellite
=12=12mv20(v0−mv02(v0−orbital velocity )
r- distance of satellite from center of earth
=12=12m(GMr)m(GMr)
=12=12m(GMR+h)m(GMR+h)
=12=12m(GMR2)R(1+hR)m(GMR2)R(1+hR)
E2=mgR2(1+hR)E2=mgR2(1+hR)
∴E1E2∴E1E2=2hR
Similar questions
Economy,
7 months ago
Hindi,
7 months ago
English,
1 year ago
Environmental Sciences,
1 year ago
Environmental Sciences,
1 year ago