Math, asked by harkamal625, 5 months ago

Find the ratio of surface areas of cubes whose volumes are 216^3 and 512^3respectively​

Answers

Answered by CɛƖɛxtríα
38

Answer:

The ratio of surface areas of two cubes whose volumes are 216 cm³ and 512 cm² is 9 : 16.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • \sf{Volume\:of\:cube\:_1=216\:cm^3}
  • \sf{Volume\:of\:cube\:_2=512\:cm^3}

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • \textsf{The ratio of TSA of the cubes}

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Volume}_{[Cube]}=a^3\:cu.units}}}

\underline{\boxed{\sf{{TSA}_{[Cube]}=6a^2\:sq.units}}}

\:\:\:\:\:\:\:\:\:\sf{\bullet\:a=side}

{\underline{\underline{\bf{Solution:}}}}

As the measures of side of the cubes aren't given, let's find them first by inserting the measure of volume of cubes in the formula:

\leadsto{\sf{\purple{Volume\:(Cube)=a^3\:cu.units}}}

{\boxed{\bf{Cube\:_1}}}

\:\:\:\:\:\::\implies{\sf{216=a^3}}

\:\:\:\:\:\:\:\:\:\::\implies{\sf{ \sqrt[3]{216}=a}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{6\:cm=a}}

{\boxed{\bf{Cube\:_2}}}

\:\:\:\:\:\::\implies{\sf{512=a^3}}

\:\:\:\:\:\:\:\:\:\::\implies{\sf{ \sqrt[3]{512}=a}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{8\:cm=a}}

We've obtained the measures of sides of the cubes. So, now let's find the TSA of the cubes by inserting the measure of side in the formula:

\leadsto{\sf{\purple{TSA\:(Cube)=6a^2\:sq.units}}}

{\boxed{\bf{Cube\:_1}}}

\:\:\:\:\:\::\implies{\sf{6\times 6^2}}

\:\:\:\:\:\:\:\:\:\::\implies{\sf{6\times 6\times 6}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{36\times 6}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{216\:cm^2}}

{\boxed{\bf{Cube\:_2}}}

\:\:\:\:\:\::\implies{\sf{6\times 8^2}}

\:\:\:\:\:\:\:\:\:\::\implies{\sf{6\times 8\times 8}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{6\times 64}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies\underline{\bf{384\:cm^2}}

Finally, the ratio of TSA of the cubes is:

\rightarrowtail{\sf{\dfrac{216}{384}}}

\:\:\:\:\:\:\:\:\:\sf{=\dfrac{108}{192}}

\:\:\:\:\:\:\:\:\:\sf{=\dfrac{54}{96}}

\:\:\:\:\:\:\:\:\:\sf{=\dfrac{27}{48}}

\:\:\:\:\:\:\:\:\:\sf{=\dfrac{9}{16}}

\:\:\:\:\:\:\:\:\:\frak{=\boxed{\frak{\red{9:16}}}}

___________________________________________

Similar questions