Find the ratio of the areas of an isosceles triangle and the triangle when the sides are doubled
Answers
Answer:
4:1
Step-by-step explanation:
Let a,b,c be the sides of the triangle.
Perimeter 2s = a+b+c
Semi- perimeter, s= (a+b+c)/2
Using Hero's formula:
Area if the triangle A = root s(s-a)(s-b)(s-c)
Now, if the sides are doubled: 2a,2b,2c
Let's be the semi-perimeter.
2s' = 2a+2b+2c
s' = a+b+c
or s' = 2s
Area if the triangle, A' = root s'(s'-2a)(s'-2b)(s'-2c)
A' = root (2s)(2s-2a)( 2s- 2b)(2s-2c)
A'= root 2⁴s (s-a)( s-b)( s-c)
A' = 4 root s (s-a)(s-b)(s-c)
A'= 4A
A':A = 4:1
Ratio of area of the new triangle and old triangle is 4:1.
Answer:
4:1
Step-by-step explanation:
Let a,b,c be the sides of the triangle.
Perimeter 2s = a+b+c
Semi- perimeter, s= (a+b+c)/2
Using Hero's formula:
Area if the triangle A = root s(s-a)(s-b)(s-c)
Now, if the sides are doubled: 2a,2b,2c
Let's be the semi-perimeter.
2s' = 2a+2b+2c
s' = a+b+c
or s' = 2s
Area if the triangle, A' = root s'(s'-2a)(s'-2b)(s'-2c)
A' = root (2s)(2s-2a)( 2s- 2b)(2s-2c)
A'= root 2⁴s (s-a)( s-b)( s-c)
A' = 4 root s (s-a)(s-b)(s-c)
A'= 4A
A':A = 4:1
Ratio of area of the new triangle and old triangle is 4:1.