Math, asked by khamersultana444, 10 months ago

Find the ratio of the sum of the zeroes to product of the zeroes of the cubic polynomial
ax³ + bx² + cx +d

Answers

Answered by mysticd
7

 Given \: Cubic \: polynomial :\\ax^{3} + bx^{2} + cx + d

 i )Sum \:of \:the \: zeroes = \frac{ - x^{2} - coefficient }{x^{3} - coefficient }\\= \frac{-b}{a} \:--(1)

 ii ) Product\:of \:the \: zeroes = \frac{ - (constant\:term) }{x^{3} - coefficient }\\= \frac{-d}{a} \:--(2)

 Ratio \:of \: the \: sum \:of \:the \: zeroes \:to \\product \:of \:the \: zeroes \:of \:the \\Cubic \: Polynomial = \frac{ \frac{-b}{a}}{\frac{-d}{a}}\\= \frac{b}{d} \\= b : d

Therefore.,

 \red { Required \:ratio } \green { = b : d }

•••♪

Answered by Anonymous
4

 \mathtt{ \huge{ \fbox{Solution :)}}}

We know that ,

The sum of roots of cubic polynomial is given by

 \large \mathtt{ \fbox{α	+ β + γ =    -  \frac{b}{a} }}

and

The product of roots of cubic polynomial is given by

 \large \mathtt{ \fbox{α	 \times  β  \times  γ =    -  \frac{d}{a} }}

Thus , the ratio of sum and product of roots of cubic polynomial is

 \sf \hookrightarrow \frac{ \alpha	+ β + γ}{ \alpha	 \times  β  \times  γ}  =    \frac{  \:  \:  - \frac{ b}{a}  \:  \: }{  - \frac{d}{a} }  \\  \\ \sf \hookrightarrow \frac{ \alpha	+ β + γ}{ \alpha	 \times  β  \times  γ}  =  \frac{b}{d}

Hence , the ratio is b : d

_____________ Keep Smiling ☺

Similar questions