Math, asked by lbadjena, 9 months ago

Find the ratio of the volume of two cubes whose sides are 1.5cm and 3.5cm

Answers

Answered by sai921603
2

Answer:

ratio = v1:v2

=(1.5)^3:(3.5)^3

=27:329

Answered by Anonymous
14

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

Find the ratio of the volume of two cubes whose sides are 1.5cm and 3.5cm ?

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • Side of first cube = 3.5 cm
  • side of second cube = 1.5 cm

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • The ratio of the volume of two cubes.

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

we know,

\small\boxed{\sf{\blue{\:Volume_{first\:cube}\:=\:(side)^3}}} \\ \\ \mapsto\sf{\:Volume_{first\:cube}\:=\:(3.5)^3} \\ \\ \mapsto\sf{\:Volume_{first\:cube}\:=\:42.875\:cm^3}

Again,

\small\boxed{\sf{\blue{\:Volume_{second\:cube}\:=\:(side)^3}}} \\ \\ \mapsto\sf{\:Volume_{second\:cube}\:=\:(1.5)^3} \\ \\ \mapsto\sf{\:Volume_{second\:cube}\:=\:3.375\:cm^3}

Now, Ratio of there volume will be

\mapsto\sf{\:(Volume_{first\:cube})\::\:(Volume_{second\:cube})}

\mapsto\sf{\:(42.875):(3.375)}

we can write in division form

\mapsto\sf{\:\dfrac{42.875}{3.375}} \\ \\  \small\sf{\:\:\:\:\:divided\:by\:35} \\ \\ \mapsto\sf{\:\dfrac{\cancel{42875}}{\cancel{3375}}} \\ \\ \small\sf{\:\:\:\:divided\:by\:25} \\ \\ \mapsto\sf{\:\dfrac{\cancel{1225}}{\cancel{135}}} \\ \\ \small\sf{\:\:\:\:\:\:divided\:by\:5} \\ \\ \mapsto\sf{\:\dfrac{245}{27}} \\ \\ \small\sf{\:\:\:\:write\:in\:ratio} \\ \\ \mapsto\sf{\:245:27}

Thus:-

\small\boxed{\sf{\:(Volume_{first\:cube})\::\:(Volume_{second\:cube})\:=\:(245:27)}}

Similar questions