Math, asked by dhruvi110000, 3 months ago

Find the ratio of two different sector of a circle with radius 20 cm and angles respectively
15 and 90.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Dimensions of first sector :-

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{radius,r_1 = 20 \: cm} \\ &\sf{angle,\theta_1 \:  = 90 \degree} \end{cases}\end{gathered}\end{gathered}

We know,

  • Area of sector is

 \boxed{ \sf \: Area_{(sector)} = \pi \:  {r}^{2} \dfrac{\theta}{360\degree}}

where,

  • r is the radius of sector

  • θ is central angle or sector angle.

So, on substituting the values of r and θ, we get

 \rm :\longmapsto\:Area_{(sector1)} = \pi \:  {(20)}^{2} \dfrac{90\degree}{360\degree}

\bf\implies \:Area_{(sector1)} = 100 \: \pi \:  {cm}^{2}  -  -  - (1)

Now,

Dimensions of second sector :-

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{radius,r_2 = 20 \: cm} \\ &\sf{angle,\theta_2 \:  = 15 \degree} \end{cases}\end{gathered}\end{gathered}

So, again on substituting the values of r and θ, we get

\rm :\longmapsto\:Area_{(sector2)} = \pi \:  {(20)}^{2} \dfrac{15\degree}{360\degree}

\bf\implies \:Area_{(sector2)} = \dfrac{50\pi}{3}\:{cm}^{2} -  -  - (2)

Therefore,

\rm :\longmapsto\:\dfrac{Area_{(sector1)}}{Area_{(sector2)}}  = \dfrac{100\pi}{\dfrac{50\pi}{3} }

\rm :\longmapsto\:\dfrac{Area_{(sector1)}}{Area_{(sector2)}}  = 6

\bf\implies \:Area_{(sector1)}: Area_{(sector2)} = 6 : 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \sf \: Length \: of \: arc_{(sector)} = 2\pi \: r \: \dfrac{\theta}{360\degree}}

 \boxed{ \sf \: Perimeter_{(sector)} = 2r + l}

 \boxed{ \sf \: Area_{(major \: sector)} = \pi \:  {r}^{2} \dfrac{(360\degree - \theta)}{360\degree}}

 \boxed{ \sf \: Area_{(minor \: segment)} = \bigg[\pi \:  {r}^{2} \dfrac{\theta}{360\degree} - \dfrac{1}{2} {r}^{2}sin\theta\bigg]}

Similar questions