World Languages, asked by hdndnjd, 1 year ago

Find the ratio of volume of cylinder. When the radius is halved, and the height is same to that of volume of cylinder.​

Answers

Answered by Anonymous
0
 \sf \underline {\underline{ANSWER}} \\ \\ \sf Given, \\ \: \: \: \: \: \: \: \: \: \: \: \sf original \: volume \: (v_{1}) = \pi{r}^{2} h \\ \sf \: \: \: \: \: \: \: \: \: \: \: reduced \: length \: (v _{2}) \: = \\ \\ \tt{ \star } \: \: radius \: is \: halved \\ \tt \star \: \: height \: is \: same \\ \\ \sf = \pi(\frac{r}{2} )^{2} h \\ \\ \\ \therefore \sf ratio \: = \frac{\pi \times r \times r \times h }{ \pi \times \frac{r}{2} \times \frac{r}{2} \times h} = \bf \red {1 : 4}
Answered by Anonymous
0

\huge{\bf{ \red{\fbox{\underline{ \color{blue}{Ola\:Amigo!}}}}}}\underline{\underline{\Huge\mathfrak{Answer}}}

ORIGINAL VOLUME=πr^2

REDUCED LENGTH=

➡️RADIUS------>>HALVED

➡️HEIGHT------>>SAME

=π(r/2)^2*h

⏩RATIO

=π*r*r*h/π*r/2*r/2*h

=1:4

\mathbb{\huge{\blue{HOPE.IT.HELPS}}}

Similar questions