Math, asked by ItzRainDoll, 1 month ago

Find the rational numbers that should be added and substracted so that they will make sum
3 \times \frac{1}{2} + 1 \times \frac{3}{4}  + 2 \times \frac{3}{8}
to the nearest whole number.

•No spam.​

Answers

Answered by tamilan01
2

 \sf {\underline {\underline{Solution:-}}}

3\times \frac{1}{2}  + 1 \times \frac{3}{4} + 2 \times \frac{3}{8}

 \sf =  \frac{7}{2}  +  \frac{7}{4}  +  \frac{19}{8} =\frac{7 \times 4 + 7 \times 2 + 19 \times 1}{8} = \frac{28 + 14 + 19}{8} ___________________________________________________________  \sf  =  \frac{61}{8} = 7 \times \frac{5}{8}, \\  \sf \: it \: lies \: btw \: the \: whole \: numbers \: 7 \: and \: 8 \sf  \: If  \: we \:  substract  \:  \frac{5}{8} from  \: 7\frac{5}{8}   \\  \sf,it \: becomes \:  7. If  \: we \:  add  \:  \frac{3}{8} \:  to \: 7 \times \frac{5}{8} , \\  \sf it \:  becomes \: 7 +  \frac{5}{8} +  \frac{3}{8} = 7 + 1 = 8.___________________________________________________________

I hope this helps you ✌

Answered by itsPapaKaHelicopter
1

Answer:-

3 \frac{1}{2}  + 1 \frac{3}{4}  + 2 \frac{3}{8}

⇒ \frac{7}{2}  +  \frac{7}{4}  +  \frac{19}{8}

⇒ \frac{7 \times 4 +7 \times 2 + 19 \times 1 }{8}  =  \frac{28 + 14 + 19}{8}

 =  \frac{61}{8}  = 7 \frac{5}{8}

which lies between the whole numbers 7 and 8.

Now,

⇒ \frac{64}{8}  = 8  \textbf{ \: and}  \:  \frac{56}{8}  = 7

Therefore,

The Rational number to be added to

 \frac{61}{8}  \:  \textbf{to \: get \: }  \frac{64}{8}  \:  \textbf{is \: } \frac{64}{8}   -  \frac{61}{8}  =  \frac{3}{8}

and the rational number to be subtracted from

 \frac{61}{8}  \:  \textbf{to \: get \: }  \frac{56}{8}   \textbf{ \: is \: }  \frac{61}{8}  -  \frac{56}{8}  =  \frac{5}{8}

 \\  \\  \\  \\ \sf \colorbox{lightgreen} {\red★ANSWER ᵇʸɴᴀᴡᴀʙ⌨}

Similar questions