Math, asked by Dinesh7717, 10 months ago

Find the rational roots of 2 x cube+ x square-7x+6

Help for brainliest

Answers

Answered by ahmad2098
1

Answer:

2x³ + x² - 7x -6 = 0. 2x³ + 2x² - x² - x - 6x - 6 = 0. 2x²(x + 1) -x(x + 1) -6(x + 1) = 0. (x + 1)(2x² - x - 6) = 0. (x + 1) ( 2x² - 

16+4-14-6=0

Step-by-step explanation:

f(x) = 2x3 +x2 -7x -6

Answered by aarushiwillows
1

Answer:

\textbf{Given:}

f(x)=2\,x^3+x^2-7\,x-6

\textbf{To find:}

\text{Roots of f(x)}

\textbf{Solution:}

\text{Consider,}

f(x)=2\,x^3+x^2-7\,x-6

\text{Sum of the coefficients of odd powers of x}=2+(-7)=-5

\text{Sum of the coefficients of even powers of x}=1+(-6)=-5

\implies\text{Sum of the coefficients of odd powers of x}=\text{Sum of the coefficients of even powers of x}

\therefore(x+1)\;\text{is a factor of f(x)}

\textbf{By synthetic division,}

\begin{array}{r|cccc}-1&2&1&-7&-6\\&&-2&1&6\\\cline{2-5}&2&-1&-6&|\,0\end{array}

\textbf{Quotient}=2\,x^2-x-6

2\,x^2-x-6=0

2\,x^2-4x+3x-6=0

2x(x-2)+3(x-2)=0

(2x+3)(x-2)=0

\implies\,x=\dfrac{-3}{2},2

\therefore\textbf{Roots of f(x) are $\bf\,-1,\dfrac{-3}{2},2$}

Similar questions