Math, asked by surajkumarkondakumar, 4 months ago

find the real and imaginary parts of the complex number a+ib/a-ib​

Answers

Answered by sharan1406
1

Answer:

a and b is the real parts of complex number.

i is the imaginary parts of the complex number.

Answered by ItzAditt007
10

Answer:-

  • \textbf{Real Part }\bf\longrightarrow\:\dfrac{a^2-b^2}{a^2+b^2}.

  • \textbf{Imaginary Part}\bf\longrightarrow\:\dfrac{2ab}{a^2+b^2}.

Explanation:-

Given Complex Number:-

  • \tt\leadsto \dfrac{a+ib}{a-ib}.

To Find:-

  • The real and imaginary parts of the number.

So,

Let us simplify the given complex number first.

\\ \tt\mapsto \frac{a + ib}{a - ib}

 \\   \tt =  \dfrac{a + ib}{a - ib}  \times  \dfrac{a + ib}{a + ib} .

 \\  \tt =  \frac{(a + ib)(a + ib)}{(a + ib)(a - ib)} .

 \\   \tt =  \frac{  \bigg[(a + ib) \times a \bigg] \bigg[(a + ib) \times ib \bigg]}{ (a) {}^{2} - (ib) {}^{2}    }. \\  \\  \rm [usi ng \:  \: id \:  \: (a + b)( a - b) =  {a}^{2}  -  {b}^{2} ].

 \\  \tt  =  \frac{ {a}^{2} + abi + abi +  (ib) {}^{2} }{ {a}^{2}  - (ib) {}^{2} } .

 \\  \tt =   \frac{ {a}^{2} + 2abi +  {i}^{2}  {b}^{2}  }{ {a}^{2} -  {i}^{2} {b}^{2}   } .

 \\   \tt =  \frac{ {a}^{2}  + 2abi + ( - 1)(b) }{a {}^{2} - ( - 1)(b) } . \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \rm as \: \: we \:  \: know \:  \: that \:  \: value \:  \: of \:  \:  {i}^{2}   \:  \: is \:  \: always \:  \:  - 1.

 \\  \tt =   \frac{ {a}^{2} -  {b}^{2}   + 2abi}{ {a}^{2}  +  {b}^{2}  } .

 \\    \large\boxed{\bf=  \frac{ {a}^{2} -  {b}^{2}  }{ {a}^{2}  +  {b}^{2} } +  \frac{2abi}{ {a}^{2} +  {b}^{2}  } .}

Therefore,

  • \textbf{Real Part }\bf =\:\dfrac{a^2-b^2}{a^2+b^2}.

  • \textbf{Imaginary Part}\bf = \:\dfrac{2ab}{a^2+b^2}.
Similar questions